Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.59 Structured version   Visualization version   GIF version

Theorem pm11.59 38411
Description: Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
pm11.59 (∀𝑥(𝜑𝜓) → ∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem pm11.59
StepHypRef Expression
1 nfv 1841 . . 3 𝑦(𝜑𝜓)
21nfal 2151 . 2 𝑦𝑥(𝜑𝜓)
3 sp 2051 . . . 4 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
4 spsbim 2392 . . . 4 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
53, 4anim12d 585 . . 3 (∀𝑥(𝜑𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
65axc4i 2129 . 2 (∀𝑥(𝜑𝜓) → ∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
72, 6alrimi 2080 1 (∀𝑥(𝜑𝜓) → ∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479  [wsb 1878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708  df-sb 1879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator