![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm1.4 | Structured version Visualization version GIF version |
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm1.4 | ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 848 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
2 | orc 847 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
3 | 1, 2 | jaoi 837 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 827 |
This theorem is referenced by: orcom 850 orcoms 852 pm2.3 889 pm2.36 950 pm2.37 951 rb-ax2 1825 nfntOLDOLD 1933 prneimg 4517 orcomdd 34216 rp-fakeanorass 38377 orbi1rVD 39599 |
Copyright terms: Public domain | W3C validator |