Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  plysub Structured version   Visualization version   GIF version

Theorem plysub 24195
 Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plymul.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plysub.5 (𝜑 → -1 ∈ 𝑆)
Assertion
Ref Expression
plysub (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plysub
StepHypRef Expression
1 cnex 10219 . . . 4 ℂ ∈ V
21a1i 11 . . 3 (𝜑 → ℂ ∈ V)
3 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
4 plyf 24174 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
53, 4syl 17 . . 3 (𝜑𝐹:ℂ⟶ℂ)
6 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plyf 24174 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
86, 7syl 17 . . 3 (𝜑𝐺:ℂ⟶ℂ)
9 ofnegsub 11220 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
102, 5, 8, 9syl3anc 1476 . 2 (𝜑 → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
11 plybss 24170 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
123, 11syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
13 plysub.5 . . . . 5 (𝜑 → -1 ∈ 𝑆)
14 plyconst 24182 . . . . 5 ((𝑆 ⊆ ℂ ∧ -1 ∈ 𝑆) → (ℂ × {-1}) ∈ (Poly‘𝑆))
1512, 13, 14syl2anc 573 . . . 4 (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝑆))
16 plyadd.3 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
17 plymul.4 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1815, 6, 16, 17plymul 24194 . . 3 (𝜑 → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))
193, 18, 16plyadd 24193 . 2 (𝜑 → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) ∈ (Poly‘𝑆))
2010, 19eqeltrrd 2851 1 (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ⊆ wss 3723  {csn 4316   × cxp 5247  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793   ∘𝑓 cof 7042  ℂcc 10136  1c1 10139   + caddc 10141   · cmul 10143   − cmin 10468  -cneg 10469  Polycply 24160 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-ply 24164 This theorem is referenced by:  plysubcl  24198  plydivlem2  24269  plydivlem4  24271  plydiveu  24273  qaa  24298  taylply2  24342  mpaaeu  38246
 Copyright terms: Public domain W3C validator