MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Visualization version   GIF version

Theorem plyremlem 24104
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
Assertion
Ref Expression
plyremlem (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))

Proof of Theorem plyremlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
2 ssid 3657 . . . . 5 ℂ ⊆ ℂ
3 ax-1cn 10032 . . . . 5 1 ∈ ℂ
4 plyid 24010 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
52, 3, 4mp2an 708 . . . 4 Xp ∈ (Poly‘ℂ)
6 plyconst 24007 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
72, 6mpan 706 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
8 plysubcl 24023 . . . 4 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
95, 7, 8sylancr 696 . . 3 (𝐴 ∈ ℂ → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
101, 9syl5eqel 2734 . 2 (𝐴 ∈ ℂ → 𝐺 ∈ (Poly‘ℂ))
11 negcl 10319 . . . . . . . . 9 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 addcom 10260 . . . . . . . . 9 ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
1311, 12sylan 487 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
14 negsub 10367 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1514ancoms 468 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1613, 15eqtrd 2685 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧𝐴))
1716mpteq2dva 4777 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
18 cnex 10055 . . . . . . . 8 ℂ ∈ V
1918a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ∈ V)
20 negex 10317 . . . . . . . 8 -𝐴 ∈ V
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V)
22 simpr 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 fconstmpt 5197 . . . . . . . 8 (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)
2423a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴))
25 df-idp 23990 . . . . . . . . 9 Xp = ( I ↾ ℂ)
26 mptresid 5491 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ 𝑧) = ( I ↾ ℂ)
2725, 26eqtr4i 2676 . . . . . . . 8 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
2827a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → Xp = (𝑧 ∈ ℂ ↦ 𝑧))
2919, 21, 22, 24, 28offval2 6956 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)))
30 simpl 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
31 fconstmpt 5197 . . . . . . . 8 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
3231a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴))
3319, 22, 30, 28, 32offval2 6956 . . . . . 6 (𝐴 ∈ ℂ → (Xp𝑓 − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
3417, 29, 333eqtr4d 2695 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = (Xp𝑓 − (ℂ × {𝐴})))
3534, 1syl6eqr 2703 . . . 4 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = 𝐺)
3635fveq2d 6233 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = (deg‘𝐺))
37 plyconst 24007 . . . . 5 ((ℂ ⊆ ℂ ∧ -𝐴 ∈ ℂ) → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
382, 11, 37sylancr 696 . . . 4 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
395a1i 11 . . . 4 (𝐴 ∈ ℂ → Xp ∈ (Poly‘ℂ))
40 0dgr 24046 . . . . . 6 (-𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
4111, 40syl 17 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
42 0lt1 10588 . . . . 5 0 < 1
4341, 42syl6eqbr 4724 . . . 4 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) < 1)
44 eqid 2651 . . . . 5 (deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴}))
45 dgrid 24065 . . . . . 6 (deg‘Xp) = 1
4645eqcomi 2660 . . . . 5 1 = (deg‘Xp)
4744, 46dgradd2 24069 . . . 4 (((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧ Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ × {-𝐴})) < 1) → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = 1)
4838, 39, 43, 47syl3anc 1366 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = 1)
4936, 48eqtr3d 2687 . 2 (𝐴 ∈ ℂ → (deg‘𝐺) = 1)
501, 33syl5eq 2697 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
5150fveq1d 6231 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
5251adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
53 ovex 6718 . . . . . . . . . 10 (𝑧𝐴) ∈ V
54 eqid 2651 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ (𝑧𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴))
5554fvmpt2 6330 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑧𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5622, 53, 55sylancl 695 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5752, 56eqtrd 2685 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = (𝑧𝐴))
5857eqeq1d 2653 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ (𝑧𝐴) = 0))
59 subeq0 10345 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6059ancoms 468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6158, 60bitrd 268 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ 𝑧 = 𝐴))
6261pm5.32da 674 . . . . 5 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
63 plyf 23999 . . . . . 6 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
64 ffn 6083 . . . . . 6 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
65 fniniseg 6378 . . . . . 6 (𝐺 Fn ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
6610, 63, 64, 654syl 19 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
67 eleq1a 2725 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 = 𝐴𝑧 ∈ ℂ))
6867pm4.71rd 668 . . . . 5 (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
6962, 66, 683bitr4d 300 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 = 𝐴))
70 velsn 4226 . . . 4 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
7169, 70syl6bbr 278 . . 3 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴}))
7271eqrdv 2649 . 2 (𝐴 ∈ ℂ → (𝐺 “ {0}) = {𝐴})
7310, 49, 723jca 1261 1 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  {csn 4210   class class class wbr 4685  cmpt 4762   I cid 5052   × cxp 5141  ccnv 5142  cres 5145  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cmin 10304  -cneg 10305  Polycply 23985  Xpcidp 23986  degcdgr 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-idp 23990  df-coe 23991  df-dgr 23992
This theorem is referenced by:  plyrem  24105  facth  24106  fta1lem  24107  vieta1lem1  24110  vieta1lem2  24111  taylply2  24167  ftalem7  24850
  Copyright terms: Public domain W3C validator