![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1sclrmsm | Structured version Visualization version GIF version |
Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1sclrmsm.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1sclrmsm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1sclrmsm.b | ⊢ 𝐸 = (Base‘𝑃) |
ply1sclrmsm.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1sclrmsm.s | ⊢ · = ( ·𝑠 ‘𝑃) |
ply1sclrmsm.m | ⊢ × = (.r‘𝑃) |
ply1sclrmsm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
ply1sclrmsm.e | ⊢ ↑ = (.g‘𝑁) |
ply1sclrmsm.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1sclrmsm | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1sclrmsm.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
2 | ply1sclrmsm.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1sca 19837 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
4 | 3 | fveq2d 6336 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
5 | 1, 4 | syl5eq 2816 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐾 = (Base‘(Scalar‘𝑃))) |
6 | 5 | eleq2d 2835 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐾 ↔ 𝐹 ∈ (Base‘(Scalar‘𝑃)))) |
7 | 6 | biimpa 462 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → 𝐹 ∈ (Base‘(Scalar‘𝑃))) |
8 | ply1sclrmsm.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
9 | eqid 2770 | . . . . . 6 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
10 | eqid 2770 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
11 | ply1sclrmsm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑃) | |
12 | eqid 2770 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
13 | 8, 9, 10, 11, 12 | asclval 19549 | . . . . 5 ⊢ (𝐹 ∈ (Base‘(Scalar‘𝑃)) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
14 | 7, 13 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
15 | 14 | 3adant3 1125 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
16 | 15 | oveq1d 6807 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = ((𝐹 · (1r‘𝑃)) × 𝑍)) |
17 | simp1 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝑅 ∈ Ring) | |
18 | 1 | eleq2i 2841 | . . . . 5 ⊢ (𝐹 ∈ 𝐾 ↔ 𝐹 ∈ (Base‘𝑅)) |
19 | 18 | biimpi 206 | . . . 4 ⊢ (𝐹 ∈ 𝐾 → 𝐹 ∈ (Base‘𝑅)) |
20 | 19 | 3ad2ant2 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝐹 ∈ (Base‘𝑅)) |
21 | 2 | ply1ring 19832 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
22 | ply1sclrmsm.b | . . . . . 6 ⊢ 𝐸 = (Base‘𝑃) | |
23 | 22, 12 | ringidcl 18775 | . . . . 5 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ 𝐸) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑃) ∈ 𝐸) |
25 | 24 | 3ad2ant1 1126 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (1r‘𝑃) ∈ 𝐸) |
26 | simp3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝑍 ∈ 𝐸) | |
27 | ply1sclrmsm.m | . . . 4 ⊢ × = (.r‘𝑃) | |
28 | eqid 2770 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
29 | 2, 27, 22, 28, 11 | ply1ass23l 42688 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ (Base‘𝑅) ∧ (1r‘𝑃) ∈ 𝐸 ∧ 𝑍 ∈ 𝐸)) → ((𝐹 · (1r‘𝑃)) × 𝑍) = (𝐹 · ((1r‘𝑃) × 𝑍))) |
30 | 17, 20, 25, 26, 29 | syl13anc 1477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐹 · (1r‘𝑃)) × 𝑍) = (𝐹 · ((1r‘𝑃) × 𝑍))) |
31 | 22, 27, 12 | ringlidm 18778 | . . . . 5 ⊢ ((𝑃 ∈ Ring ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
32 | 21, 31 | sylan 561 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
33 | 32 | 3adant2 1124 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
34 | 33 | oveq2d 6808 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (𝐹 · ((1r‘𝑃) × 𝑍)) = (𝐹 · 𝑍)) |
35 | 16, 30, 34 | 3eqtrd 2808 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 .rcmulr 16149 Scalarcsca 16151 ·𝑠 cvsca 16152 .gcmg 17747 mulGrpcmgp 18696 1rcur 18708 Ringcrg 18754 algSccascl 19525 var1cv1 19760 Poly1cpl1 19761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-tset 16167 df-ple 16168 df-0g 16309 df-gsum 16310 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-mulg 17748 df-subg 17798 df-ghm 17865 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-subrg 18987 df-ascl 19528 df-psr 19570 df-mpl 19572 df-opsr 19574 df-psr1 19764 df-ply1 19766 |
This theorem is referenced by: coe1sclmulval 42691 |
Copyright terms: Public domain | W3C validator |