MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1sca2 Structured version   Visualization version   GIF version

Theorem ply1sca2 19826
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypothesis
Ref Expression
ply1lmod.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1sca2 ( I ‘𝑅) = (Scalar‘𝑃)

Proof of Theorem ply1sca2
StepHypRef Expression
1 fvi 6417 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
2 ply1lmod.p . . . 4 𝑃 = (Poly1𝑅)
32ply1sca 19825 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃))
41, 3eqtrd 2794 . 2 (𝑅 ∈ V → ( I ‘𝑅) = (Scalar‘𝑃))
5 fvprc 6346 . . 3 𝑅 ∈ V → ( I ‘𝑅) = ∅)
6 fvprc 6346 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
76fveq2d 6356 . . . 4 𝑅 ∈ V → (Scalar‘(Poly1𝑅)) = (Scalar‘∅))
82fveq2i 6355 . . . 4 (Scalar‘𝑃) = (Scalar‘(Poly1𝑅))
9 df-sca 16159 . . . . 5 Scalar = Slot 5
109str0 16113 . . . 4 ∅ = (Scalar‘∅)
117, 8, 103eqtr4g 2819 . . 3 𝑅 ∈ V → (Scalar‘𝑃) = ∅)
125, 11eqtr4d 2797 . 2 𝑅 ∈ V → ( I ‘𝑅) = (Scalar‘𝑃))
134, 12pm2.61i 176 1 ( I ‘𝑅) = (Scalar‘𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1632  wcel 2139  Vcvv 3340  c0 4058   I cid 5173  cfv 6049  5c5 11265  Scalarcsca 16146  Poly1cpl1 19749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-ple 16163  df-psr 19558  df-opsr 19562  df-psr1 19752  df-ply1 19754
This theorem is referenced by:  ply1tmcl  19844  ply1scltm  19853  ply1sclf  19857  ply1scl0  19862  ply1scl1  19864  deg1invg  24065
  Copyright terms: Public domain W3C validator