MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1sca Structured version   Visualization version   GIF version

Theorem ply1sca 19837
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypothesis
Ref Expression
ply1lmod.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1sca (𝑅𝑉𝑅 = (Scalar‘𝑃))

Proof of Theorem ply1sca
StepHypRef Expression
1 eqid 2770 . . 3 (PwSer1𝑅) = (PwSer1𝑅)
21psr1sca 19834 . 2 (𝑅𝑉𝑅 = (Scalar‘(PwSer1𝑅)))
3 fvex 6342 . . 3 (Base‘(1𝑜 mPoly 𝑅)) ∈ V
4 ply1lmod.p . . . . 5 𝑃 = (Poly1𝑅)
54, 1ply1val 19778 . . . 4 𝑃 = ((PwSer1𝑅) ↾s (Base‘(1𝑜 mPoly 𝑅)))
6 eqid 2770 . . . 4 (Scalar‘(PwSer1𝑅)) = (Scalar‘(PwSer1𝑅))
75, 6resssca 16238 . . 3 ((Base‘(1𝑜 mPoly 𝑅)) ∈ V → (Scalar‘(PwSer1𝑅)) = (Scalar‘𝑃))
83, 7ax-mp 5 . 2 (Scalar‘(PwSer1𝑅)) = (Scalar‘𝑃)
92, 8syl6eq 2820 1 (𝑅𝑉𝑅 = (Scalar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  Vcvv 3349  cfv 6031  (class class class)co 6792  1𝑜c1o 7705  Basecbs 16063  Scalarcsca 16151   mPoly cmpl 19567  PwSer1cps1 19759  Poly1cpl1 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-tset 16167  df-ple 16168  df-psr 19570  df-opsr 19574  df-psr1 19764  df-ply1 19766
This theorem is referenced by:  ply1sca2  19838  ply10s0  19840  ply1ascl  19842  coe1pwmul  19863  ply1idvr1  19877  ply1coefsupp  19879  ply1coe  19880  cply1coe0bi  19884  gsumsmonply1  19887  gsummoncoe1  19888  lply1binomsc  19891  evls1sca  19902  evl1vsd  19922  evl1scvarpw  19941  evl1gsummon  19943  cpmatacl  20740  cpmatinvcl  20741  mat2pmatbas  20750  mat2pmatghm  20754  mat2pmatmul  20755  mat2pmatlin  20759  decpmatid  20794  pmatcollpw2lem  20801  monmatcollpw  20803  pmatcollpwlem  20804  pmatcollpwscmatlem1  20813  pm2mpcl  20821  idpm2idmp  20825  mply1topmatcllem  20827  mply1topmatcl  20829  mp2pm2mplem4  20833  mp2pm2mplem5  20834  pm2mpghmlem2  20836  pm2mpghm  20840  pm2mpmhmlem1  20842  pm2mpmhmlem2  20843  monmat2matmon  20848  chpscmat  20866  chpscmatgsumbin  20868  chpscmatgsummon  20869  deg1pwle  24098  deg1pw  24099  ply1remlem  24141  fta1blem  24147  plypf1  24187  ply1vr1smo  42687  ply1sclrmsm  42689  ply1mulgsumlem4  42695  ply1mulgsum  42696
  Copyright terms: Public domain W3C validator