Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem1 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem1 42684
 Description: Lemma 1 for ply1mulgsum 42688. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   · (𝑛,𝑠)   × (𝑛,𝑠)   (𝑛,𝑠)   (𝑛,𝑠)   𝑀(𝑛,𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem ply1mulgsumlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.a . . . 4 𝐴 = (coe1𝐾)
2 ply1mulgsum.b . . . 4 𝐵 = (Base‘𝑃)
3 ply1mulgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 eqid 2760 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4coe1ae0 19788 . . 3 (𝐾𝐵 → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
653ad2ant2 1129 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))
7 ply1mulgsum.c . . . . 5 𝐶 = (coe1𝐿)
87, 2, 3, 4coe1ae0 19788 . . . 4 (𝐿𝐵 → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
983ad2ant3 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)))
10 nn0addcl 11520 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 + 𝑏) ∈ ℕ0)
1110adantr 472 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑎 + 𝑏) ∈ ℕ0)
1211adantr 472 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → (𝑎 + 𝑏) ∈ ℕ0)
13 breq1 4807 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑎 + 𝑏) → (𝑠 < 𝑛 ↔ (𝑎 + 𝑏) < 𝑛))
1413imbi1d 330 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑎 + 𝑏) → ((𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1514ralbidv 3124 . . . . . . . . . . . . . . 15 (𝑠 = (𝑎 + 𝑏) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
1615adantl 473 . . . . . . . . . . . . . 14 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) ∧ 𝑠 = (𝑎 + 𝑏)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))) ↔ ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
17 r19.26 3202 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) ↔ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))))
18 nn0cn 11494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
1918adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑎 ∈ ℂ)
20 nn0cn 11494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
2120adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → 𝑏 ∈ ℂ)
2219, 21addcomd 10430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
23223adant3 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
2423breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 ↔ (𝑏 + 𝑎) < 𝑛))
25 nn0sumltlt 42638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑏 + 𝑎) < 𝑛𝑎 < 𝑛))
2624, 25sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
27263expia 1115 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℕ0𝑎 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2827ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
2928adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛)))
3029imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑎 < 𝑛))
3130imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐶𝑛) = (0g𝑅))))
3231com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅))))
3332imp 444 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (𝐶𝑛) = (0g𝑅)))
34 nn0sumltlt 42638 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
35343expia 1115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3635adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛)))
3736imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛𝑏 < 𝑛))
3837imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑎 + 𝑏) < 𝑛 → (𝐴𝑛) = (0g𝑅))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅))))
4039imp 444 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → ((𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝐴𝑛) = (0g𝑅)))
4133, 40anim12d 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅))))
4241imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐶𝑛) = (0g𝑅) ∧ (𝐴𝑛) = (0g𝑅)))
4342ancomd 466 . . . . . . . . . . . . . . . . . . 19 ((((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 + 𝑏) < 𝑛) ∧ ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))
4443exp31 631 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑛 → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4544com23 86 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4645ralimdva 3100 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (∀𝑛 ∈ ℕ0 ((𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4717, 46syl5bir 233 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
4847imp 444 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑎 + 𝑏) < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
4912, 16, 48rspcedvd 3456 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
5049exp31 631 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5150com23 86 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5251expd 451 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5352com34 91 . . . . . . . . 9 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5453impancom 455 . . . . . . . 8 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5554com14 96 . . . . . . 7 (∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → (𝑏 ∈ ℕ0 → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))))
5655impcom 445 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5756rexlimiva 3166 . . . . 5 (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5857com13 88 . . . 4 ((𝑎 ∈ ℕ0 ∧ ∀𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
5958rexlimiva 3166 . . 3 (∃𝑎 ∈ ℕ0𝑛 ∈ ℕ0 (𝑎 < 𝑛 → (𝐶𝑛) = (0g𝑅)) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))))
609, 59mpcom 38 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (∃𝑏 ∈ ℕ0𝑛 ∈ ℕ0 (𝑏 < 𝑛 → (𝐴𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅)))))
616, 60mpd 15 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴𝑛) = (0g𝑅) ∧ (𝐶𝑛) = (0g𝑅))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℂcc 10126   + caddc 10131   < clt 10266  ℕ0cn0 11484  Basecbs 16059  .rcmulr 16144   ·𝑠 cvsca 16147  0gc0g 16302  .gcmg 17741  mulGrpcmgp 18689  Ringcrg 18747  var1cv1 19748  Poly1cpl1 19749  coe1cco1 19750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-ple 16163  df-psr 19558  df-mpl 19560  df-opsr 19562  df-psr1 19752  df-ply1 19754  df-coe1 19755 This theorem is referenced by:  ply1mulgsumlem2  42685
 Copyright terms: Public domain W3C validator