Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1mpl1 Structured version   Visualization version   GIF version

Theorem ply1mpl1 19841
 Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
ply1mpl1.m 𝑀 = (1𝑜 mPoly 𝑅)
ply1mpl1.p 𝑃 = (Poly1𝑅)
ply1mpl1.o 1 = (1r𝑃)
Assertion
Ref Expression
ply1mpl1 1 = (1r𝑀)

Proof of Theorem ply1mpl1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mpl1.o . 2 1 = (1r𝑃)
2 eqidd 2771 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑃))
3 ply1mpl1.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2770 . . . . . . 7 (PwSer1𝑅) = (PwSer1𝑅)
5 eqid 2770 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
63, 4, 5ply1bas 19779 . . . . . 6 (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅))
7 ply1mpl1.m . . . . . . 7 𝑀 = (1𝑜 mPoly 𝑅)
87fveq2i 6335 . . . . . 6 (Base‘𝑀) = (Base‘(1𝑜 mPoly 𝑅))
96, 8eqtr4i 2795 . . . . 5 (Base‘𝑃) = (Base‘𝑀)
109a1i 11 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑀))
11 eqid 2770 . . . . . . 7 (.r𝑃) = (.r𝑃)
123, 7, 11ply1mulr 19811 . . . . . 6 (.r𝑃) = (.r𝑀)
1312a1i 11 . . . . 5 (⊤ → (.r𝑃) = (.r𝑀))
1413oveqdr 6818 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑥(.r𝑀)𝑦))
152, 10, 14rngidpropd 18902 . . 3 (⊤ → (1r𝑃) = (1r𝑀))
1615trud 1640 . 2 (1r𝑃) = (1r𝑀)
171, 16eqtri 2792 1 1 = (1r𝑀)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   = wceq 1630  ⊤wtru 1631   ∈ wcel 2144  ‘cfv 6031  (class class class)co 6792  1𝑜c1o 7705  Basecbs 16063  .rcmulr 16149  1rcur 18708   mPoly cmpl 19567  PwSer1cps1 19759  Poly1cpl1 19761 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-dec 11695  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-ple 16168  df-0g 16309  df-mgp 18697  df-ur 18709  df-psr 19570  df-mpl 19572  df-opsr 19574  df-psr1 19764  df-ply1 19766 This theorem is referenced by:  ply1ascl  19842  ply1nzb  24101
 Copyright terms: Public domain W3C validator