![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1mpl1 | Structured version Visualization version GIF version |
Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
ply1mpl1.m | ⊢ 𝑀 = (1𝑜 mPoly 𝑅) |
ply1mpl1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mpl1.o | ⊢ 1 = (1r‘𝑃) |
Ref | Expression |
---|---|
ply1mpl1 | ⊢ 1 = (1r‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mpl1.o | . 2 ⊢ 1 = (1r‘𝑃) | |
2 | eqidd 2771 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
3 | ply1mpl1.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2770 | . . . . . . 7 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
5 | eqid 2770 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
6 | 3, 4, 5 | ply1bas 19779 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅)) |
7 | ply1mpl1.m | . . . . . . 7 ⊢ 𝑀 = (1𝑜 mPoly 𝑅) | |
8 | 7 | fveq2i 6335 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1𝑜 mPoly 𝑅)) |
9 | 6, 8 | eqtr4i 2795 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
11 | eqid 2770 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
12 | 3, 7, 11 | ply1mulr 19811 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑀) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (⊤ → (.r‘𝑃) = (.r‘𝑀)) |
14 | 13 | oveqdr 6818 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
15 | 2, 10, 14 | rngidpropd 18902 | . . 3 ⊢ (⊤ → (1r‘𝑃) = (1r‘𝑀)) |
16 | 15 | trud 1640 | . 2 ⊢ (1r‘𝑃) = (1r‘𝑀) |
17 | 1, 16 | eqtri 2792 | 1 ⊢ 1 = (1r‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1630 ⊤wtru 1631 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 1𝑜c1o 7705 Basecbs 16063 .rcmulr 16149 1rcur 18708 mPoly cmpl 19567 PwSer1cps1 19759 Poly1cpl1 19761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-dec 11695 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-ple 16168 df-0g 16309 df-mgp 18697 df-ur 18709 df-psr 19570 df-mpl 19572 df-opsr 19574 df-psr1 19764 df-ply1 19766 |
This theorem is referenced by: ply1ascl 19842 ply1nzb 24101 |
Copyright terms: Public domain | W3C validator |