![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1mpl0 | Structured version Visualization version GIF version |
Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
ply1mpl0.m | ⊢ 𝑀 = (1𝑜 mPoly 𝑅) |
ply1mpl0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1mpl0.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
ply1mpl0 | ⊢ 0 = (0g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mpl0.z | . 2 ⊢ 0 = (0g‘𝑃) | |
2 | eqidd 2652 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑃)) | |
3 | ply1mpl0.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2651 | . . . . . . 7 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
5 | eqid 2651 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
6 | 3, 4, 5 | ply1bas 19613 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅)) |
7 | ply1mpl0.m | . . . . . . 7 ⊢ 𝑀 = (1𝑜 mPoly 𝑅) | |
8 | 7 | fveq2i 6232 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘(1𝑜 mPoly 𝑅)) |
9 | 6, 8 | eqtr4i 2676 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑀) |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝑃) = (Base‘𝑀)) |
11 | eqid 2651 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
12 | 3, 7, 11 | ply1plusg 19643 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑀) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (⊤ → (+g‘𝑃) = (+g‘𝑀)) |
14 | 13 | oveqdr 6714 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
15 | 2, 10, 14 | grpidpropd 17308 | . . 3 ⊢ (⊤ → (0g‘𝑃) = (0g‘𝑀)) |
16 | 15 | trud 1533 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑀) |
17 | 1, 16 | eqtri 2673 | 1 ⊢ 0 = (0g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 Basecbs 15904 +gcplusg 15988 0gc0g 16147 mPoly cmpl 19401 PwSer1cps1 19593 Poly1cpl1 19595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-ple 16008 df-0g 16149 df-psr 19404 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-ply1 19600 |
This theorem is referenced by: coe1z 19681 ply1coe 19714 deg1z 23892 deg1nn0cl 23893 deg1ldg 23897 ply1nzb 23927 |
Copyright terms: Public domain | W3C validator |