MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1mpl0 Structured version   Visualization version   GIF version

Theorem ply1mpl0 19673
Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
ply1mpl0.m 𝑀 = (1𝑜 mPoly 𝑅)
ply1mpl0.p 𝑃 = (Poly1𝑅)
ply1mpl0.z 0 = (0g𝑃)
Assertion
Ref Expression
ply1mpl0 0 = (0g𝑀)

Proof of Theorem ply1mpl0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mpl0.z . 2 0 = (0g𝑃)
2 eqidd 2652 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑃))
3 ply1mpl0.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2651 . . . . . . 7 (PwSer1𝑅) = (PwSer1𝑅)
5 eqid 2651 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
63, 4, 5ply1bas 19613 . . . . . 6 (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅))
7 ply1mpl0.m . . . . . . 7 𝑀 = (1𝑜 mPoly 𝑅)
87fveq2i 6232 . . . . . 6 (Base‘𝑀) = (Base‘(1𝑜 mPoly 𝑅))
96, 8eqtr4i 2676 . . . . 5 (Base‘𝑃) = (Base‘𝑀)
109a1i 11 . . . 4 (⊤ → (Base‘𝑃) = (Base‘𝑀))
11 eqid 2651 . . . . . . 7 (+g𝑃) = (+g𝑃)
123, 7, 11ply1plusg 19643 . . . . . 6 (+g𝑃) = (+g𝑀)
1312a1i 11 . . . . 5 (⊤ → (+g𝑃) = (+g𝑀))
1413oveqdr 6714 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g𝑃)𝑦) = (𝑥(+g𝑀)𝑦))
152, 10, 14grpidpropd 17308 . . 3 (⊤ → (0g𝑃) = (0g𝑀))
1615trud 1533 . 2 (0g𝑃) = (0g𝑀)
171, 16eqtri 2673 1 0 = (0g𝑀)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wtru 1524  wcel 2030  cfv 5926  (class class class)co 6690  1𝑜c1o 7598  Basecbs 15904  +gcplusg 15988  0gc0g 16147   mPoly cmpl 19401  PwSer1cps1 19593  Poly1cpl1 19595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-ple 16008  df-0g 16149  df-psr 19404  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-ply1 19600
This theorem is referenced by:  coe1z  19681  ply1coe  19714  deg1z  23892  deg1nn0cl  23893  deg1ldg  23897  ply1nzb  23927
  Copyright terms: Public domain W3C validator