MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   GIF version

Theorem ply1frcl 19881
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q 𝑄 = ran (𝑆 evalSub1 𝑅)
Assertion
Ref Expression
ply1frcl (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))

Proof of Theorem ply1frcl
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4060 . . 3 (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅)
2 ply1frcl.q . . 3 𝑄 = ran (𝑆 evalSub1 𝑅)
31, 2eleq2s 2853 . 2 (𝑋𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅)
4 rneq 5502 . . . 4 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅)
5 rn0 5528 . . . 4 ran ∅ = ∅
64, 5syl6eq 2806 . . 3 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅)
76necon3i 2960 . 2 (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅)
8 n0 4070 . . 3 ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅))
9 df-evls1 19878 . . . . . . 7 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑠)‘𝑟)))
109dmmpt2ssx 7399 . . . . . 6 dom evalSub1 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))
11 elfvdm 6377 . . . . . . 7 (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
12 df-ov 6812 . . . . . . 7 (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩)
1311, 12eleq2s 2853 . . . . . 6 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
1410, 13sseldi 3738 . . . . 5 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)))
15 fveq2 6348 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1615pweqd 4303 . . . . . 6 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆))
1716opeliunxp2 5412 . . . . 5 (⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1814, 17sylib 208 . . . 4 (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1918exlimiv 2003 . . 3 (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
208, 19sylbi 207 . 2 ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
213, 7, 203syl 18 1 (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1628  wex 1849  wcel 2135  wne 2928  Vcvv 3336  csb 3670  c0 4054  𝒫 cpw 4298  {csn 4317  cop 4323   ciun 4668  cmpt 4877   × cxp 5260  dom cdm 5262  ran crn 5263  ccom 5266  cfv 6045  (class class class)co 6809  1𝑜c1o 7718  𝑚 cmap 8019  Basecbs 16055   evalSub ces 19702   evalSub1 ces1 19876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-1st 7329  df-2nd 7330  df-evls1 19878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator