![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1frcl | Structured version Visualization version GIF version |
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
Ref | Expression |
---|---|
ply1frcl.q | ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) |
Ref | Expression |
---|---|
ply1frcl | ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4060 | . . 3 ⊢ (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅) | |
2 | ply1frcl.q | . . 3 ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) | |
3 | 1, 2 | eleq2s 2853 | . 2 ⊢ (𝑋 ∈ 𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅) |
4 | rneq 5502 | . . . 4 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅) | |
5 | rn0 5528 | . . . 4 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | syl6eq 2806 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅) |
7 | 6 | necon3i 2960 | . 2 ⊢ (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅) |
8 | n0 4070 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅)) | |
9 | df-evls1 19878 | . . . . . . 7 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑𝑚 (𝑏 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑠)‘𝑟))) | |
10 | 9 | dmmpt2ssx 7399 | . . . . . 6 ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) |
11 | elfvdm 6377 | . . . . . . 7 ⊢ (𝑒 ∈ ( evalSub1 ‘〈𝑆, 𝑅〉) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) | |
12 | df-ov 6812 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = ( evalSub1 ‘〈𝑆, 𝑅〉) | |
13 | 11, 12 | eleq2s 2853 | . . . . . 6 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) |
14 | 10, 13 | sseldi 3738 | . . . . 5 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))) |
15 | fveq2 6348 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | |
16 | 15 | pweqd 4303 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆)) |
17 | 16 | opeliunxp2 5412 | . . . . 5 ⊢ (〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
18 | 14, 17 | sylib 208 | . . . 4 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
19 | 18 | exlimiv 2003 | . . 3 ⊢ (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
20 | 8, 19 | sylbi 207 | . 2 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
21 | 3, 7, 20 | 3syl 18 | 1 ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∃wex 1849 ∈ wcel 2135 ≠ wne 2928 Vcvv 3336 ⦋csb 3670 ∅c0 4054 𝒫 cpw 4298 {csn 4317 〈cop 4323 ∪ ciun 4668 ↦ cmpt 4877 × cxp 5260 dom cdm 5262 ran crn 5263 ∘ ccom 5266 ‘cfv 6045 (class class class)co 6809 1𝑜c1o 7718 ↑𝑚 cmap 8019 Basecbs 16055 evalSub ces 19702 evalSub1 ces1 19876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-1st 7329 df-2nd 7330 df-evls1 19878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |