MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1assa Structured version   Visualization version   GIF version

Theorem ply1assa 19791
Description: The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1assa (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)

Proof of Theorem ply1assa
StepHypRef Expression
1 crngring 18778 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 ply1val.1 . . . 4 𝑃 = (Poly1𝑅)
3 eqid 2760 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
4 eqid 2760 . . . 4 (Base‘𝑃) = (Base‘𝑃)
52, 3, 4ply1subrg 19789 . . 3 (𝑅 ∈ Ring → (Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)))
61, 5syl 17 . 2 (𝑅 ∈ CRing → (Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)))
72, 3, 4ply1lss 19788 . . 3 (𝑅 ∈ Ring → (Base‘𝑃) ∈ (LSubSp‘(PwSer1𝑅)))
81, 7syl 17 . 2 (𝑅 ∈ CRing → (Base‘𝑃) ∈ (LSubSp‘(PwSer1𝑅)))
93psr1assa 19780 . . 3 (𝑅 ∈ CRing → (PwSer1𝑅) ∈ AssAlg)
10 eqid 2760 . . . . 5 (1r‘(PwSer1𝑅)) = (1r‘(PwSer1𝑅))
1110subrg1cl 19010 . . . 4 ((Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)) → (1r‘(PwSer1𝑅)) ∈ (Base‘𝑃))
126, 11syl 17 . . 3 (𝑅 ∈ CRing → (1r‘(PwSer1𝑅)) ∈ (Base‘𝑃))
13 eqid 2760 . . . . 5 (Base‘(PwSer1𝑅)) = (Base‘(PwSer1𝑅))
1413subrgss 19003 . . . 4 ((Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)) → (Base‘𝑃) ⊆ (Base‘(PwSer1𝑅)))
156, 14syl 17 . . 3 (𝑅 ∈ CRing → (Base‘𝑃) ⊆ (Base‘(PwSer1𝑅)))
162, 3ply1val 19786 . . . . 5 𝑃 = ((PwSer1𝑅) ↾s (Base‘(1𝑜 mPoly 𝑅)))
172, 3, 4ply1bas 19787 . . . . . 6 (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅))
1817oveq2i 6825 . . . . 5 ((PwSer1𝑅) ↾s (Base‘𝑃)) = ((PwSer1𝑅) ↾s (Base‘(1𝑜 mPoly 𝑅)))
1916, 18eqtr4i 2785 . . . 4 𝑃 = ((PwSer1𝑅) ↾s (Base‘𝑃))
20 eqid 2760 . . . 4 (LSubSp‘(PwSer1𝑅)) = (LSubSp‘(PwSer1𝑅))
2119, 20, 13, 10issubassa 19546 . . 3 (((PwSer1𝑅) ∈ AssAlg ∧ (1r‘(PwSer1𝑅)) ∈ (Base‘𝑃) ∧ (Base‘𝑃) ⊆ (Base‘(PwSer1𝑅))) → (𝑃 ∈ AssAlg ↔ ((Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)) ∧ (Base‘𝑃) ∈ (LSubSp‘(PwSer1𝑅)))))
229, 12, 15, 21syl3anc 1477 . 2 (𝑅 ∈ CRing → (𝑃 ∈ AssAlg ↔ ((Base‘𝑃) ∈ (SubRing‘(PwSer1𝑅)) ∧ (Base‘𝑃) ∈ (LSubSp‘(PwSer1𝑅)))))
236, 8, 22mpbir2and 995 1 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6814  1𝑜c1o 7723  Basecbs 16079  s cress 16080  1rcur 18721  Ringcrg 18767  CRingccrg 18768  SubRingcsubrg 18998  LSubSpclss 19154  AssAlgcasa 19531   mPoly cmpl 19575  PwSer1cps1 19767  Poly1cpl1 19769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-tset 16182  df-ple 16183  df-0g 16324  df-gsum 16325  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-lmod 19087  df-lss 19155  df-assa 19534  df-psr 19578  df-mpl 19580  df-opsr 19582  df-psr1 19772  df-ply1 19774
This theorem is referenced by:  lply1binomsc  19899  evl1vsd  19930  pf1subrg  19934  evl1scvarpw  19949  mat2pmatmul  20758  mat2pmatlin  20762  monmatcollpw  20806  pmatcollpwlem  20807  chpscmatgsumbin  20871  fta1blem  24147
  Copyright terms: Public domain W3C validator