![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1ass23l | Structured version Visualization version GIF version |
Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ass23l.t | ⊢ × = (.r‘𝑃) |
ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
Ref | Expression |
---|---|
ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ (1𝑜 mPwSer 𝑅) = (1𝑜 mPwSer 𝑅) | |
2 | 1on 7612 | . . 3 ⊢ 1𝑜 ∈ On | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1𝑜 ∈ On) |
4 | simpl 472 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
5 | eqid 2651 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
6 | eqid 2651 | . . 3 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
9 | 7, 6, 8 | ply1mulr 19645 | . . 3 ⊢ × = (.r‘(1𝑜 mPoly 𝑅)) |
10 | 6, 1, 9 | mplmulr 19639 | . 2 ⊢ × = (.r‘(1𝑜 mPwSer 𝑅)) |
11 | eqid 2651 | . 2 ⊢ (Base‘(1𝑜 mPwSer 𝑅)) = (Base‘(1𝑜 mPwSer 𝑅)) | |
12 | eqid 2651 | . . . . . 6 ⊢ (Base‘(1𝑜 mPoly 𝑅)) = (Base‘(1𝑜 mPoly 𝑅)) | |
13 | 6, 1, 12, 11 | mplbasss 19480 | . . . . 5 ⊢ (Base‘(1𝑜 mPoly 𝑅)) ⊆ (Base‘(1𝑜 mPwSer 𝑅)) |
14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
15 | 7, 14 | ply1bascl2 19622 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1𝑜 mPoly 𝑅))) |
16 | 13, 15 | sseldi 3634 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
17 | 16 | 3ad2ant2 1103 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
18 | 17 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
19 | 7, 14 | ply1bascl2 19622 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1𝑜 mPoly 𝑅))) |
20 | 13, 19 | sseldi 3634 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
21 | 20 | 3ad2ant3 1104 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
22 | 21 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1𝑜 mPwSer 𝑅))) |
23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
25 | 7, 6, 24 | ply1vsca 19644 | . . 3 ⊢ · = ( ·𝑠 ‘(1𝑜 mPoly 𝑅)) |
26 | 6, 1, 25 | mplvsca2 19494 | . 2 ⊢ · = ( ·𝑠 ‘(1𝑜 mPwSer 𝑅)) |
27 | simpr1 1087 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 19456 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {crab 2945 ◡ccnv 5142 “ cima 5146 Oncon0 5761 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 ↑𝑚 cmap 7899 Fincfn 7997 ℕcn 11058 ℕ0cn0 11330 Basecbs 15904 .rcmulr 15989 ·𝑠 cvsca 15992 Ringcrg 18593 mPwSer cmps 19399 mPoly cmpl 19401 Poly1cpl1 19595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-tset 16007 df-ple 16008 df-0g 16149 df-gsum 16150 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-minusg 17473 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-psr 19404 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-ply1 19600 |
This theorem is referenced by: ply1sclrmsm 42496 |
Copyright terms: Public domain | W3C validator |