![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version |
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1ascl | ⊢ 𝐴 = (algSc‘(1𝑜 mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
2 | eqid 2651 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
3 | eqid 2651 | . . . 4 ⊢ (Scalar‘(1𝑜 mPoly 𝑅)) = (Scalar‘(1𝑜 mPoly 𝑅)) | |
4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4 | ply1sca 19671 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
6 | 5 | fveq2d 6233 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
7 | eqid 2651 | . . . . . 6 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
8 | 1on 7612 | . . . . . . 7 ⊢ 1𝑜 ∈ On | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1𝑜 ∈ On) |
10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
11 | 7, 9, 10 | mplsca 19493 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1𝑜 mPoly 𝑅))) |
12 | 11 | fveq2d 6233 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1𝑜 mPoly 𝑅)))) |
13 | eqid 2651 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
14 | 4, 7, 13 | ply1vsca 19644 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1𝑜 mPoly 𝑅)) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1𝑜 mPoly 𝑅))) |
16 | 15 | oveqdr 6714 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1𝑜 mPoly 𝑅))𝑦)) |
17 | eqid 2651 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
18 | 7, 4, 17 | ply1mpl1 19675 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1𝑜 mPoly 𝑅)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1𝑜 mPoly 𝑅))) |
20 | fvexd 6241 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 19394 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1𝑜 mPoly 𝑅))) |
22 | fvprc 6223 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
23 | 4, 22 | syl5eq 2697 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
24 | reldmmpl 19475 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc2 6725 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1𝑜 mPoly 𝑅) = ∅) |
26 | 23, 25 | eqtr4d 2688 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1𝑜 mPoly 𝑅)) |
27 | 26 | fveq2d 6233 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1𝑜 mPoly 𝑅))) |
28 | 21, 27 | pm2.61i 176 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1𝑜 mPoly 𝑅)) |
29 | 1, 28 | eqtri 2673 | 1 ⊢ 𝐴 = (algSc‘(1𝑜 mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 Oncon0 5761 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 Basecbs 15904 Scalarcsca 15991 ·𝑠 cvsca 15992 1rcur 18547 algSccascl 19359 mPoly cmpl 19401 Poly1cpl1 19595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-tset 16007 df-ple 16008 df-0g 16149 df-mgp 18536 df-ur 18548 df-ascl 19362 df-psr 19404 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-ply1 19600 |
This theorem is referenced by: subrg1ascl 19677 subrg1asclcl 19678 evls1sca 19736 evl1sca 19746 pf1ind 19767 deg1le0 23916 |
Copyright terms: Public domain | W3C validator |