![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltne | Structured version Visualization version GIF version |
Description: Less-than relation. (df-pss 3719 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltne.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltne | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2748 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | pltne.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 17132 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | 3 | simplbda 655 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
5 | 4 | ex 449 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 ‘cfv 6037 lecple 16121 ltcplt 17113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-iota 6000 df-fun 6039 df-fv 6045 df-plt 17130 |
This theorem is referenced by: pltirr 17135 ogrpaddlt 29998 ornglmullt 30087 orngrmullt 30088 ofldchr 30094 isarchiofld 30097 atlen0 35069 1cvratex 35231 ps-2 35236 lhpn0 35762 |
Copyright terms: Public domain | W3C validator |