![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pliguhgr | Structured version Visualization version GIF version |
Description: Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 26094 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
Ref | Expression |
---|---|
pliguhgr | ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6287 | . . . 4 ⊢ ( I ↾ 𝐺):𝐺–1-1-onto→𝐺 | |
2 | f1of 6250 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺–1-1-onto→𝐺 → ( I ↾ 𝐺):𝐺⟶𝐺) | |
3 | pwuni 4582 | . . . . . . 7 ⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 | |
4 | n0lplig 27567 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | |
5 | 4 | adantr 472 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ¬ ∅ ∈ 𝐺) |
6 | disjsn 4353 | . . . . . . . . 9 ⊢ ((𝐺 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐺) | |
7 | 5, 6 | sylibr 224 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → (𝐺 ∩ {∅}) = ∅) |
8 | reldisj 4128 | . . . . . . . . 9 ⊢ (𝐺 ⊆ 𝒫 ∪ 𝐺 → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) | |
9 | 8 | adantl 473 | . . . . . . . 8 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → ((𝐺 ∩ {∅}) = ∅ ↔ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅}))) |
10 | 7, 9 | mpbid 222 | . . . . . . 7 ⊢ ((𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺) → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
11 | 3, 10 | mpan2 709 | . . . . . 6 ⊢ (𝐺 ∈ Plig → 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) |
12 | fss 6169 | . . . . . 6 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ⊆ (𝒫 ∪ 𝐺 ∖ {∅})) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) | |
13 | 11, 12 | sylan2 492 | . . . . 5 ⊢ ((( I ↾ 𝐺):𝐺⟶𝐺 ∧ 𝐺 ∈ Plig) → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
14 | 13 | ex 449 | . . . 4 ⊢ (( I ↾ 𝐺):𝐺⟶𝐺 → (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
15 | 1, 2, 14 | mp2b 10 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):𝐺⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
16 | 15 | ffdmd 6176 | . 2 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅})) |
17 | uniexg 7072 | . . 3 ⊢ (𝐺 ∈ Plig → ∪ 𝐺 ∈ V) | |
18 | resiexg 7219 | . . 3 ⊢ (𝐺 ∈ Plig → ( I ↾ 𝐺) ∈ V) | |
19 | isuhgrop 26085 | . . 3 ⊢ ((∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺) ∈ V) → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) | |
20 | 17, 18, 19 | syl2anc 696 | . 2 ⊢ (𝐺 ∈ Plig → (〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph ↔ ( I ↾ 𝐺):dom ( I ↾ 𝐺)⟶(𝒫 ∪ 𝐺 ∖ {∅}))) |
21 | 16, 20 | mpbird 247 | 1 ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∖ cdif 3677 ∩ cin 3679 ⊆ wss 3680 ∅c0 4023 𝒫 cpw 4266 {csn 4285 〈cop 4291 ∪ cuni 4544 I cid 5127 dom cdm 5218 ↾ cres 5220 ⟶wf 5997 –1-1-onto→wf1o 6000 UHGraphcuhgr 26071 Pligcplig 27558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-reg 8613 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-1st 7285 df-2nd 7286 df-vtx 25996 df-iedg 25997 df-uhgr 26073 df-plig 27559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |