![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plelttr | Structured version Visualization version GIF version |
Description: Transitive law for chained less-than-or-equal and less-than. (sspsstr 3745 analog.) (Contributed by NM, 2-May-2012.) |
Ref | Expression |
---|---|
pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
pltletr.l | ⊢ ≤ = (le‘𝐾) |
pltletr.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plelttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pltletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | pltletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2 17012 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
5 | 4 | 3adant3r3 1297 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
6 | 1, 3 | plttr 17017 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
7 | 6 | expd 451 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
8 | breq1 4688 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑍 ↔ 𝑌 < 𝑍)) | |
9 | 8 | biimprd 238 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
11 | 7, 10 | jaod 394 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
12 | 5, 11 | sylbid 230 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
13 | 12 | impd 446 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 Posetcpo 16987 ltcplt 16988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-preset 16975 df-poset 16993 df-plt 17005 |
This theorem is referenced by: isarchi3 29869 archiabllem2c 29877 athgt 35060 1cvratex 35077 |
Copyright terms: Public domain | W3C validator |