MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ple1 Structured version   Visualization version   GIF version

Theorem ple1 17216
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
ple1.b 𝐵 = (Base‘𝐾)
ple1.u 𝑈 = (lub‘𝐾)
ple1.l = (le‘𝐾)
ple1.1 1 = (1.‘𝐾)
ple1.k (𝜑𝐾𝑉)
ple1.x (𝜑𝑋𝐵)
ple1.d (𝜑𝐵 ∈ dom 𝑈)
Assertion
Ref Expression
ple1 (𝜑𝑋 1 )

Proof of Theorem ple1
StepHypRef Expression
1 ple1.b . . 3 𝐵 = (Base‘𝐾)
2 ple1.l . . 3 = (le‘𝐾)
3 ple1.u . . 3 𝑈 = (lub‘𝐾)
4 ple1.k . . 3 (𝜑𝐾𝑉)
5 ple1.d . . 3 (𝜑𝐵 ∈ dom 𝑈)
6 ple1.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6luble 17159 . 2 (𝜑𝑋 (𝑈𝐵))
8 ple1.1 . . . 4 1 = (1.‘𝐾)
91, 3, 8p1val 17214 . . 3 (𝐾𝑉1 = (𝑈𝐵))
104, 9syl 17 . 2 (𝜑1 = (𝑈𝐵))
117, 10breqtrrd 4820 1 (𝜑𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1620  wcel 2127   class class class wbr 4792  dom cdm 5254  cfv 6037  Basecbs 16030  lecple 16121  lubclub 17114  1.cp1 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-lub 17146  df-p1 17212
This theorem is referenced by:  ople1  34950  lhp2lt  35759
  Copyright terms: Public domain W3C validator