Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem2N Structured version   Visualization version   GIF version

Theorem pl42lem2N 35781
 Description: Lemma for pl42N 35784. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem2N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))

Proof of Theorem pl42lem2N
StepHypRef Expression
1 simpl1 1226 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
2 hllat 35165 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
4 simpl2 1228 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
5 simpl3 1230 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
6 pl42lem.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 pl42lem.j . . . . . . 7 = (join‘𝐾)
86, 7latjcl 17258 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑌) ∈ 𝐵)
10 eqid 2770 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
11 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
126, 10, 11pmapssat 35560 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
131, 9, 12syl2anc 565 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
14 simpr2 1234 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
156, 7latjcl 17258 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
163, 4, 14, 15syl3anc 1475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑊) ∈ 𝐵)
17 simpr3 1236 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
186, 7latjcl 17258 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
193, 5, 17, 18syl3anc 1475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑌 𝑉) ∈ 𝐵)
20 pl42lem.m . . . . . . 7 = (meet‘𝐾)
216, 20latmcl 17259 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
223, 16, 19, 21syl3anc 1475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
236, 10, 11pmapssat 35560 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
241, 22, 23syl2anc 565 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
251, 13, 243jca 1121 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)))
26 pl42lem.p . . . . . 6 + = (+𝑃𝐾)
276, 7, 11, 26pmapjoin 35653 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
283, 4, 5, 27syl3anc 1475 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
296, 7, 11, 26pmapjoin 35653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
303, 4, 14, 29syl3anc 1475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
316, 7, 11, 26pmapjoin 35653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
323, 5, 17, 31syl3anc 1475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
33 ss2in 3987 . . . . . 6 ((((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)) ∧ ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉))) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3430, 32, 33syl2anc 565 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
356, 20, 10, 11pmapmeet 35574 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
361, 16, 19, 35syl3anc 1475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3734, 36sseqtr4d 3789 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))
3828, 37jca 495 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
3910, 26paddss12 35620 . . 3 ((𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))))
4025, 38, 39sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
416, 7, 11, 26pmapjoin 35653 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
423, 9, 22, 41syl3anc 1475 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
4340, 42sstrd 3760 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ∩ cin 3720   ⊆ wss 3721  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  occoc 16156  joincjn 17151  meetcmee 17152  Latclat 17252  Atomscatm 35065  HLchlt 35152  pmapcpmap 35298  +𝑃cpadd 35596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-poset 17153  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-lat 17253  df-clat 17315  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-pmap 35305  df-padd 35597 This theorem is referenced by:  pl42lem4N  35783
 Copyright terms: Public domain W3C validator