Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem1N Structured version   Visualization version   GIF version

Theorem pl42lem1N 35780
Description: Lemma for pl42N 35784. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem1N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))

Proof of Theorem pl42lem1N
StepHypRef Expression
1 simp11 1244 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ HL)
2 hllat 35165 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ Lat)
4 simp12 1245 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋𝐵)
5 simp13 1246 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑌𝐵)
6 pl42lem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
7 pl42lem.j . . . . . . . 8 = (join‘𝐾)
86, 7latjcl 17258 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝑋 𝑌) ∈ 𝐵)
10 simp21 1247 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍𝐵)
11 pl42lem.m . . . . . . 7 = (meet‘𝐾)
126, 11latmcl 17259 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
133, 9, 10, 12syl3anc 1475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
14 simp22 1248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑊𝐵)
156, 7latjcl 17258 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
163, 13, 14, 15syl3anc 1475 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
17 simp23 1249 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑉𝐵)
18 eqid 2770 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
19 pl42lem.f . . . . 5 𝐹 = (pmap‘𝐾)
206, 11, 18, 19pmapmeet 35574 . . . 4 ((𝐾 ∈ HL ∧ (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵𝑉𝐵) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
211, 16, 17, 20syl3anc 1475 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
22 pl42lem.l . . . . . . 7 = (le‘𝐾)
23 hlop 35164 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
241, 23syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ OP)
25 pl42lem.o . . . . . . . . 9 = (oc‘𝐾)
266, 25opoccl 34996 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
2724, 14, 26syl2anc 565 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ( 𝑊) ∈ 𝐵)
286, 22, 11latmle2 17284 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) 𝑍)
293, 9, 10, 28syl3anc 1475 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) 𝑍)
30 simp3r 1243 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍 ( 𝑊))
316, 22, 3, 13, 10, 27, 29, 30lattrd 17265 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ( 𝑊))
32 pl42lem.p . . . . . . 7 + = (+𝑃𝐾)
336, 22, 7, 19, 25, 32pmapojoinN 35769 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) ∧ ((𝑋 𝑌) 𝑍) ( 𝑊)) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
341, 13, 14, 31, 33syl31anc 1478 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
356, 11, 18, 19pmapmeet 35574 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
361, 9, 10, 35syl3anc 1475 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
37 simp3l 1242 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋 ( 𝑌))
386, 22, 7, 19, 25, 32pmapojoinN 35769 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
391, 4, 5, 37, 38syl31anc 1478 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
4039ineq1d 3962 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4136, 40eqtrd 2804 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4241oveq1d 6807 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4334, 42eqtrd 2804 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4443ineq1d 3962 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
4521, 44eqtrd 2804 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
46453expia 1113 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cin 3720   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  occoc 16156  joincjn 17151  meetcmee 17152  Latclat 17252  OPcops 34974  Atomscatm 35065  HLchlt 35152  pmapcpmap 35298  +𝑃cpadd 35596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-polarityN 35704  df-psubclN 35736
This theorem is referenced by:  pl42lem4N  35783
  Copyright terms: Public domain W3C validator