Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   GIF version

Theorem pl1cn 30332
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p 𝑃 = (Poly1𝑅)
pl1cn.e 𝐸 = (eval1𝑅)
pl1cn.b 𝐵 = (Base‘𝑃)
pl1cn.k 𝐾 = (Base‘𝑅)
pl1cn.j 𝐽 = (TopOpen‘𝑅)
pl1cn.1 (𝜑𝑅 ∈ CRing)
pl1cn.2 (𝜑𝑅 ∈ TopRing)
pl1cn.3 (𝜑𝐹𝐵)
Assertion
Ref Expression
pl1cn (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))

Proof of Theorem pl1cn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2761 . 2 (+g𝑅) = (+g𝑅)
3 eqid 2761 . 2 (.r𝑅) = (.r𝑅)
4 eqid 2761 . 2 ran (eval1𝑅) = ran (eval1𝑅)
5 fvex 6364 . . . . . . . . 9 (Base‘𝑅) ∈ V
61, 5eqeltri 2836 . . . . . . . 8 𝐾 ∈ V
76a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐾 ∈ V)
8 fvexd 6366 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ V)
9 fvexd 6366 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑔𝑥) ∈ V)
10 simp1 1131 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝜑)
11 eqid 2761 . . . . . . . . . . 11 𝐽 = 𝐽
1211, 11cnf 21273 . . . . . . . . . 10 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓: 𝐽 𝐽)
13 ffn 6207 . . . . . . . . . 10 (𝑓: 𝐽 𝐽𝑓 Fn 𝐽)
1412, 13syl 17 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓 Fn 𝐽)
15143ad2ant2 1129 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 Fn 𝐽)
16 dffn5 6405 . . . . . . . . . 10 (𝑓 Fn 𝐾𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
17 pl1cn.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ TopRing)
18 trgtgp 22193 . . . . . . . . . . . . 13 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
19 pl1cn.j . . . . . . . . . . . . . 14 𝐽 = (TopOpen‘𝑅)
2019, 1tgptopon 22108 . . . . . . . . . . . . 13 (𝑅 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐾))
2117, 18, 203syl 18 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐾))
22 toponuni 20942 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝐾) → 𝐾 = 𝐽)
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝐾 = 𝐽)
2423fneq2d 6144 . . . . . . . . . 10 (𝜑 → (𝑓 Fn 𝐾𝑓 Fn 𝐽))
2516, 24syl5rbbr 275 . . . . . . . . 9 (𝜑 → (𝑓 Fn 𝐽𝑓 = (𝑥𝐾 ↦ (𝑓𝑥))))
2625biimpa 502 . . . . . . . 8 ((𝜑𝑓 Fn 𝐽) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2710, 15, 26syl2anc 696 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2811, 11cnf 21273 . . . . . . . . . 10 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔: 𝐽 𝐽)
29 ffn 6207 . . . . . . . . . 10 (𝑔: 𝐽 𝐽𝑔 Fn 𝐽)
3028, 29syl 17 . . . . . . . . 9 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔 Fn 𝐽)
31303ad2ant3 1130 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 Fn 𝐽)
32 dffn5 6405 . . . . . . . . . 10 (𝑔 Fn 𝐾𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3323fneq2d 6144 . . . . . . . . . 10 (𝜑 → (𝑔 Fn 𝐾𝑔 Fn 𝐽))
3432, 33syl5rbbr 275 . . . . . . . . 9 (𝜑 → (𝑔 Fn 𝐽𝑔 = (𝑥𝐾 ↦ (𝑔𝑥))))
3534biimpa 502 . . . . . . . 8 ((𝜑𝑔 Fn 𝐽) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3610, 31, 35syl2anc 696 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
377, 8, 9, 27, 36offval2 7081 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (+g𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))))
38213ad2ant1 1128 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐾))
39 simp2 1132 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 ∈ (𝐽 Cn 𝐽))
4027, 39eqeltrrd 2841 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑓𝑥)) ∈ (𝐽 Cn 𝐽))
41 simp3 1133 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 ∈ (𝐽 Cn 𝐽))
4236, 41eqeltrrd 2841 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑔𝑥)) ∈ (𝐽 Cn 𝐽))
43 eqid 2761 . . . . . . . . . 10 (+𝑓𝑅) = (+𝑓𝑅)
441, 2, 43plusffval 17469 . . . . . . . . 9 (+𝑓𝑅) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧))
4519, 43tgpcn 22110 . . . . . . . . . 10 (𝑅 ∈ TopGrp → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4617, 18, 453syl 18 . . . . . . . . 9 (𝜑 → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4744, 46syl5eqelr 2845 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
48473ad2ant1 1128 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
49 oveq12 6824 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(+g𝑅)𝑧) = ((𝑓𝑥)(+g𝑅)(𝑔𝑥)))
5038, 40, 42, 38, 38, 48, 49cnmpt12 21693 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
5137, 50eqeltrd 2840 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
52513adant2l 1190 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
53523adant3l 1194 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓𝑓 (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
54533expb 1114 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓𝑓 (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
557, 8, 9, 27, 36offval2 7081 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (.r𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))))
56 eqid 2761 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5756, 1mgpbas 18716 . . . . . . . . . 10 𝐾 = (Base‘(mulGrp‘𝑅))
5856, 3mgpplusg 18714 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
59 eqid 2761 . . . . . . . . . 10 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
6057, 58, 59plusffval 17469 . . . . . . . . 9 (+𝑓‘(mulGrp‘𝑅)) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧))
6119, 59mulrcn 22204 . . . . . . . . . 10 (𝑅 ∈ TopRing → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6217, 61syl 17 . . . . . . . . 9 (𝜑 → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6360, 62syl5eqelr 2845 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
64633ad2ant1 1128 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
65 oveq12 6824 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(.r𝑅)𝑧) = ((𝑓𝑥)(.r𝑅)(𝑔𝑥)))
6638, 40, 42, 38, 38, 64, 65cnmpt12 21693 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
6755, 66eqeltrd 2840 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
68673adant2l 1190 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓𝑓 (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
69683adant3l 1194 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓𝑓 (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
70693expb 1114 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓𝑓 (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
71 eleq1 2828 . 2 ( = (𝐾 × {𝑓}) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽)))
72 eleq1 2828 . 2 ( = ( I ↾ 𝐾) → ( ∈ (𝐽 Cn 𝐽) ↔ ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽)))
73 eleq1 2828 . 2 ( = 𝑓 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑓 ∈ (𝐽 Cn 𝐽)))
74 eleq1 2828 . 2 ( = 𝑔 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑔 ∈ (𝐽 Cn 𝐽)))
75 eleq1 2828 . 2 ( = (𝑓𝑓 (+g𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓𝑓 (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
76 eleq1 2828 . 2 ( = (𝑓𝑓 (.r𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓𝑓 (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
77 eleq1 2828 . 2 ( = (𝐸𝐹) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐸𝐹) ∈ (𝐽 Cn 𝐽)))
7821adantr 472 . . 3 ((𝜑𝑓𝐾) → 𝐽 ∈ (TopOn‘𝐾))
79 simpr 479 . . 3 ((𝜑𝑓𝐾) → 𝑓𝐾)
80 cnconst2 21310 . . 3 ((𝐽 ∈ (TopOn‘𝐾) ∧ 𝐽 ∈ (TopOn‘𝐾) ∧ 𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
8178, 78, 79, 80syl3anc 1477 . 2 ((𝜑𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
82 idcn 21284 . . 3 (𝐽 ∈ (TopOn‘𝐾) → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
8321, 82syl 17 . 2 (𝜑 → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
84 pl1cn.1 . . . . 5 (𝜑𝑅 ∈ CRing)
85 pl1cn.e . . . . . . 7 𝐸 = (eval1𝑅)
86 pl1cn.p . . . . . . 7 𝑃 = (Poly1𝑅)
87 eqid 2761 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
8885, 86, 87, 1evl1rhm 19919 . . . . . 6 (𝑅 ∈ CRing → 𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)))
89 pl1cn.b . . . . . . 7 𝐵 = (Base‘𝑃)
90 eqid 2761 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
9189, 90rhmf 18949 . . . . . 6 (𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝐸:𝐵⟶(Base‘(𝑅s 𝐾)))
92 ffn 6207 . . . . . 6 (𝐸:𝐵⟶(Base‘(𝑅s 𝐾)) → 𝐸 Fn 𝐵)
93 dffn3 6216 . . . . . . 7 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9493biimpi 206 . . . . . 6 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9588, 91, 92, 944syl 19 . . . . 5 (𝑅 ∈ CRing → 𝐸:𝐵⟶ran 𝐸)
9684, 95syl 17 . . . 4 (𝜑𝐸:𝐵⟶ran 𝐸)
97 pl1cn.3 . . . 4 (𝜑𝐹𝐵)
9896, 97ffvelrnd 6525 . . 3 (𝜑 → (𝐸𝐹) ∈ ran 𝐸)
9985rneqi 5508 . . 3 ran 𝐸 = ran (eval1𝑅)
10098, 99syl6eleq 2850 . 2 (𝜑 → (𝐸𝐹) ∈ ran (eval1𝑅))
1011, 2, 3, 4, 54, 70, 71, 72, 73, 74, 75, 76, 77, 81, 83, 100pf1ind 19942 1 (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341  {csn 4322   cuni 4589  cmpt 4882   I cid 5174   × cxp 5265  ran crn 5268  cres 5269   Fn wfn 6045  wf 6046  cfv 6050  (class class class)co 6815  cmpt2 6817  𝑓 cof 7062  Basecbs 16080  +gcplusg 16164  .rcmulr 16165  TopOpenctopn 16305  s cpws 16330  +𝑓cplusf 17461  mulGrpcmgp 18710  CRingccrg 18769   RingHom crh 18935  Poly1cpl1 19770  eval1ce1 19902  TopOnctopon 20938   Cn ccn 21251   ×t ctx 21586  TopGrpctgp 22097  TopRingctrg 22181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-ofr 7065  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-plusf 17463  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-srg 18727  df-ring 18770  df-cring 18771  df-rnghom 18938  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19195  df-assa 19535  df-asp 19536  df-ascl 19537  df-psr 19579  df-mvr 19580  df-mpl 19581  df-opsr 19583  df-evls 19729  df-evl 19730  df-psr1 19773  df-ply1 19775  df-evl1 19904  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cn 21254  df-cnp 21255  df-tx 21588  df-tmd 22098  df-tgp 22099  df-trg 22185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator