![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjth | Structured version Visualization version GIF version |
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) |
Ref | Expression |
---|---|
pjth.v | ⊢ 𝑉 = (Base‘𝑊) |
pjth.s | ⊢ ⊕ = (LSSum‘𝑊) |
pjth.o | ⊢ 𝑂 = (ocv‘𝑊) |
pjth.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
pjth.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
pjth | ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlphl 23382 | . . . . . 6 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | |
2 | 1 | 3ad2ant1 1128 | . . . . 5 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil) |
3 | phllmod 20198 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ LMod) |
5 | simp2 1132 | . . . 4 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ 𝐿) | |
6 | pjth.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
7 | pjth.l | . . . . . . 7 ⊢ 𝐿 = (LSubSp‘𝑊) | |
8 | 6, 7 | lssss 19160 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ 𝑉) |
9 | 8 | 3ad2ant2 1129 | . . . . 5 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ 𝑉) |
10 | pjth.o | . . . . . 6 ⊢ 𝑂 = (ocv‘𝑊) | |
11 | 6, 10, 7 | ocvlss 20239 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ⊆ 𝑉) → (𝑂‘𝑈) ∈ 𝐿) |
12 | 2, 9, 11 | syl2anc 696 | . . . 4 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑂‘𝑈) ∈ 𝐿) |
13 | pjth.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
14 | 7, 13 | lsmcl 19306 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ (𝑂‘𝑈) ∈ 𝐿) → (𝑈 ⊕ (𝑂‘𝑈)) ∈ 𝐿) |
15 | 4, 5, 12, 14 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) ∈ 𝐿) |
16 | 6, 7 | lssss 19160 | . . 3 ⊢ ((𝑈 ⊕ (𝑂‘𝑈)) ∈ 𝐿 → (𝑈 ⊕ (𝑂‘𝑈)) ⊆ 𝑉) |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) ⊆ 𝑉) |
18 | eqid 2761 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
19 | eqid 2761 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
20 | eqid 2761 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
21 | eqid 2761 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
22 | simpl1 1228 | . . . . 5 ⊢ (((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ ℂHil) | |
23 | simpl2 1230 | . . . . 5 ⊢ (((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ 𝑉) → 𝑈 ∈ 𝐿) | |
24 | simpr 479 | . . . . 5 ⊢ (((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
25 | pjth.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
26 | simpl3 1232 | . . . . 5 ⊢ (((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ 𝑉) → 𝑈 ∈ (Clsd‘𝐽)) | |
27 | 6, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26 | pjthlem2 23430 | . . . 4 ⊢ (((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (𝑈 ⊕ (𝑂‘𝑈))) |
28 | 27 | ex 449 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (𝑈 ⊕ (𝑂‘𝑈)))) |
29 | 28 | ssrdv 3751 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑉 ⊆ (𝑈 ⊕ (𝑂‘𝑈))) |
30 | 17, 29 | eqssd 3762 | 1 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 ·𝑖cip 16169 TopOpenctopn 16305 -gcsg 17646 LSSumclsm 18270 LModclmod 19086 LSubSpclss 19155 PreHilcphl 20192 ocvcocv 20227 Clsdccld 21043 normcnm 22603 ℂHilchl 23352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-tpos 7523 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-map 8028 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-fi 8485 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-q 12003 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ioo 12393 df-ico 12395 df-icc 12396 df-fz 12541 df-fzo 12681 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-rest 16306 df-topn 16307 df-0g 16325 df-gsum 16326 df-topgen 16327 df-pt 16328 df-prds 16331 df-xrs 16385 df-qtop 16390 df-imas 16391 df-xps 16393 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-ghm 17880 df-cntz 17971 df-lsm 18272 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-cring 18771 df-oppr 18844 df-dvdsr 18862 df-unit 18863 df-invr 18893 df-dvr 18904 df-rnghom 18938 df-drng 18972 df-subrg 19001 df-staf 19068 df-srng 19069 df-lmod 19088 df-lss 19156 df-lmhm 19245 df-lvec 19326 df-sra 19395 df-rgmod 19396 df-psmet 19961 df-xmet 19962 df-met 19963 df-bl 19964 df-mopn 19965 df-fbas 19966 df-fg 19967 df-cnfld 19970 df-phl 20194 df-ocv 20230 df-top 20922 df-topon 20939 df-topsp 20960 df-bases 20973 df-cld 21046 df-ntr 21047 df-cls 21048 df-nei 21125 df-cn 21254 df-cnp 21255 df-haus 21342 df-cmp 21413 df-tx 21588 df-hmeo 21781 df-fil 21872 df-flim 21965 df-fcls 21967 df-xms 22347 df-ms 22348 df-tms 22349 df-nm 22609 df-ngp 22610 df-nlm 22613 df-cncf 22903 df-clm 23084 df-cph 23189 df-cfil 23274 df-cmet 23276 df-cms 23353 df-bn 23354 df-hl 23355 |
This theorem is referenced by: pjth2 23432 |
Copyright terms: Public domain | W3C validator |