HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjspansn Structured version   Visualization version   GIF version

Theorem pjspansn 28767
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjspansn ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))

Proof of Theorem pjspansn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spansnch 28750 . . . 4 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
213ad2ant1 1128 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (span‘{𝐴}) ∈ C )
3 simp2 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
4 eqid 2761 . . . . 5 ((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵)
5 pjeq 28589 . . . . 5 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵) ↔ (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))))
64, 5mpbii 223 . . . 4 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦)))
76simprd 482 . . 3 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
82, 3, 7syl2anc 696 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
9 oveq1 6822 . . . . . . 7 (𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
109ad2antll 767 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
11 pjhcl 28591 . . . . . . . . . . 11 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
122, 3, 11syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
1312adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
14 choccl 28496 . . . . . . . . . . . 12 ((span‘{𝐴}) ∈ C → (⊥‘(span‘{𝐴})) ∈ C )
151, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (⊥‘(span‘{𝐴})) ∈ C )
16153ad2ant1 1128 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (⊥‘(span‘{𝐴})) ∈ C )
17 chel 28418 . . . . . . . . . 10 (((⊥‘(span‘{𝐴})) ∈ C𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
1816, 17sylan 489 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
19 simpl1 1228 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ ℋ)
20 ax-his2 28271 . . . . . . . . 9 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
2113, 18, 19, 20syl3anc 1477 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
22 spansnsh 28751 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ S )
2322adantr 472 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (span‘{𝐴}) ∈ S )
24 spansnid 28753 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
2524adantr 472 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ (span‘{𝐴}))
26 simpr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ (⊥‘(span‘{𝐴})))
27 shocorth 28482 . . . . . . . . . . . . 13 ((span‘{𝐴}) ∈ S → ((𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0))
28273impib 1109 . . . . . . . . . . . 12 (((span‘{𝐴}) ∈ S𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
2923, 25, 26, 28syl3anc 1477 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
3015, 17sylan 489 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
31 orthcom 28296 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3230, 31syldan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3329, 32mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
34333ad2antl1 1201 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
3534oveq2d 6831 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0))
36 hicl 28268 . . . . . . . . . 10 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3713, 19, 36syl2anc 696 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3837addid1d 10449 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
3921, 35, 383eqtrd 2799 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4039adantrr 755 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4110, 40eqtrd 2795 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4241oveq1d 6830 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)))
4342oveq1d 6830 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
44 simpl1 1228 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ∈ ℋ)
45 simpl3 1232 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ≠ 0)
46 axpjcl 28590 . . . . . 6 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
472, 3, 46syl2anc 696 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
4847adantr 472 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
49 normcan 28766 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴})) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5044, 45, 48, 49syl3anc 1477 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5143, 50eqtr2d 2796 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
528, 51rexlimddv 3174 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  wrex 3052  {csn 4322  cfv 6050  (class class class)co 6815  cc 10147  0cc0 10149   + caddc 10152   / cdiv 10897  2c2 11283  cexp 13075  chil 28107   + cva 28108   · csm 28109   ·ih csp 28110  normcno 28111  0c0v 28112   S csh 28116   C cch 28117  cort 28118  spancspn 28120  projcpjh 28125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cc 9470  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229  ax-hilex 28187  ax-hfvadd 28188  ax-hvcom 28189  ax-hvass 28190  ax-hv0cl 28191  ax-hvaddid 28192  ax-hfvmul 28193  ax-hvmulid 28194  ax-hvmulass 28195  ax-hvdistr1 28196  ax-hvdistr2 28197  ax-hvmul0 28198  ax-hfi 28267  ax-his1 28270  ax-his2 28271  ax-his3 28272  ax-his4 28273  ax-hcompl 28390
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-cn 21254  df-cnp 21255  df-lm 21256  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cfil 23274  df-cau 23275  df-cmet 23276  df-grpo 27678  df-gid 27679  df-ginv 27680  df-gdiv 27681  df-ablo 27730  df-vc 27745  df-nv 27778  df-va 27781  df-ba 27782  df-sm 27783  df-0v 27784  df-vs 27785  df-nmcv 27786  df-ims 27787  df-dip 27887  df-ssp 27908  df-ph 27999  df-cbn 28050  df-hnorm 28156  df-hba 28157  df-hvsub 28159  df-hlim 28160  df-hcau 28161  df-sh 28395  df-ch 28409  df-oc 28440  df-ch0 28441  df-shs 28498  df-span 28499  df-pjh 28585
This theorem is referenced by:  kbpj  29146
  Copyright terms: Public domain W3C validator