HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   GIF version

Theorem pjpreeq 28597
Description: Equality with a projection. This version of pjeq 28598 does not assume the Axiom of Choice via pjhth 28592. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjpreeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 chsh 28421 . . . . . . . 8 (𝐻C𝐻S )
2 shocsh 28483 . . . . . . . . 9 (𝐻S → (⊥‘𝐻) ∈ S )
31, 2syl 17 . . . . . . . 8 (𝐻C → (⊥‘𝐻) ∈ S )
4 shsel 28513 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
51, 3, 4syl2anc 573 . . . . . . 7 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
65biimpa 462 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
7 ocin 28495 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
81, 7syl 17 . . . . . . . 8 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
9 pjhthmo 28501 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
101, 3, 8, 9syl3anc 1476 . . . . . . 7 (𝐻C → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1110adantr 466 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
12 reu5 3308 . . . . . . 7 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
13 df-rmo 3069 . . . . . . . 8 (∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1413anbi2i 609 . . . . . . 7 ((∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
1512, 14bitri 264 . . . . . 6 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
166, 11, 15sylanbrc 572 . . . . 5 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
17 riotacl 6771 . . . . 5 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
1816, 17syl 17 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
19 eleq1 2838 . . . 4 ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻𝐵𝐻))
2018, 19syl5ibcom 235 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵𝐵𝐻))
2120pm4.71rd 552 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
22 shsss 28512 . . . . . 6 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
231, 3, 22syl2anc 573 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
2423sselda 3752 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → 𝐴 ∈ ℋ)
25 pjhval 28596 . . . 4 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2624, 25syldan 579 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2726eqeq1d 2773 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
28 id 22 . . . 4 (𝐵𝐻𝐵𝐻)
29 oveq1 6803 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 + 𝑥) = (𝐵 + 𝑥))
3029eqeq2d 2781 . . . . . 6 (𝑦 = 𝐵 → (𝐴 = (𝑦 + 𝑥) ↔ 𝐴 = (𝐵 + 𝑥)))
3130rexbidv 3200 . . . . 5 (𝑦 = 𝐵 → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)))
3231riota2 6779 . . . 4 ((𝐵𝐻 ∧ ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3328, 16, 32syl2anr 584 . . 3 (((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) ∧ 𝐵𝐻) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3433pm5.32da 568 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)) ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
3521, 27, 343bitr4d 300 1 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  ∃*wmo 2619  wrex 3062  ∃!wreu 3063  ∃*wrmo 3064  cin 3722  wss 3723  cfv 6030  crio 6756  (class class class)co 6796  chil 28116   + cva 28117   S csh 28125   C cch 28126  cort 28127   + cph 28128  0c0h 28132  projcpjh 28134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his2 28280  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-grpo 27687  df-ablo 27739  df-hvsub 28168  df-sh 28404  df-ch 28418  df-oc 28449  df-ch0 28450  df-shs 28507  df-pjh 28594
This theorem is referenced by:  pjeq  28598  pjpjpre  28618  chscllem1  28836  chscllem2  28837  chscllem3  28838
  Copyright terms: Public domain W3C validator