HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthmo Structured version   Visualization version   GIF version

Theorem pjhthmo 28491
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhthmo ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem pjhthmo
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 900 . . . 4 (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) ↔ ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
2 reeanv 3245 . . . . . 6 (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) ↔ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
3 simpll1 1255 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐴S )
4 simpll2 1257 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐵S )
5 simpll3 1259 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝐴𝐵) = 0)
6 simplrl 819 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥𝐴)
7 simprll 821 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑦𝐵)
8 simplrr 820 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑧𝐴)
9 simprlr 822 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑤𝐵)
10 simprrl 823 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑥 + 𝑦))
11 simprrr 824 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑧 + 𝑤))
1210, 11eqtr3d 2796 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
133, 4, 5, 6, 7, 8, 9, 12shuni 28489 . . . . . . . . 9 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 = 𝑧𝑦 = 𝑤))
1413simpld 477 . . . . . . . 8 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥 = 𝑧)
1514exp32 632 . . . . . . 7 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((𝑦𝐵𝑤𝐵) → ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
1615rexlimdvv 3175 . . . . . 6 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
172, 16syl5bir 233 . . . . 5 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
1817expimpd 630 . . . 4 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
191, 18syl5bir 233 . . 3 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
2019alrimivv 2005 . 2 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
21 eleq1w 2822 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
22 oveq1 6821 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 + 𝑦) = (𝑧 + 𝑦))
2322eqeq2d 2770 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = (𝑥 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑦)))
2423rexbidv 3190 . . . . 5 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑦𝐵 𝐶 = (𝑧 + 𝑦)))
25 oveq2 6822 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 + 𝑦) = (𝑧 + 𝑤))
2625eqeq2d 2770 . . . . . 6 (𝑦 = 𝑤 → (𝐶 = (𝑧 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑤)))
2726cbvrexv 3311 . . . . 5 (∃𝑦𝐵 𝐶 = (𝑧 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))
2824, 27syl6bb 276 . . . 4 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
2921, 28anbi12d 749 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
3029mo4 2655 . 2 (∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
3120, 30sylibr 224 1 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  ∃*wmo 2608  wrex 3051  cin 3714  (class class class)co 6814   + cva 28107   S csh 28115  0c0h 28122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-hvsub 28158  df-sh 28394  df-ch0 28440
This theorem is referenced by:  pjhtheu  28583  pjpreeq  28587
  Copyright terms: Public domain W3C validator