Step | Hyp | Ref
| Expression |
1 | | pjfval.k |
. 2
⊢ 𝐾 = (proj‘𝑊) |
2 | | fveq2 6344 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) |
3 | | pjfval.l |
. . . . . . 7
⊢ 𝐿 = (LSubSp‘𝑊) |
4 | 2, 3 | syl6eqr 2804 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿) |
5 | | fveq2 6344 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (proj1‘𝑤) =
(proj1‘𝑊)) |
6 | | pjfval.p |
. . . . . . . 8
⊢ 𝑃 = (proj1‘𝑊) |
7 | 5, 6 | syl6eqr 2804 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (proj1‘𝑤) = 𝑃) |
8 | | eqidd 2753 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
9 | | fveq2 6344 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) |
10 | | pjfval.o |
. . . . . . . . 9
⊢ ⊥ =
(ocv‘𝑊) |
11 | 9, 10 | syl6eqr 2804 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
12 | 11 | fveq1d 6346 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑥) = ( ⊥ ‘𝑥)) |
13 | 7, 8, 12 | oveq123d 6826 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥)) = (𝑥𝑃( ⊥ ‘𝑥))) |
14 | 4, 13 | mpteq12dv 4877 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) = (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥)))) |
15 | | fveq2 6344 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
16 | | pjfval.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
17 | 15, 16 | syl6eqr 2804 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
18 | 17, 17 | oveq12d 6823 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((Base‘𝑤) ↑𝑚
(Base‘𝑤)) = (𝑉 ↑𝑚
𝑉)) |
19 | 18 | xpeq2d 5288 |
. . . . 5
⊢ (𝑤 = 𝑊 → (V × ((Base‘𝑤) ↑𝑚
(Base‘𝑤))) = (V
× (𝑉
↑𝑚 𝑉))) |
20 | 14, 19 | ineq12d 3950 |
. . . 4
⊢ (𝑤 = 𝑊 → ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑𝑚
(Base‘𝑤)))) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉)))) |
21 | | df-pj 20241 |
. . . 4
⊢ proj =
(𝑤 ∈ V ↦ ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑𝑚
(Base‘𝑤))))) |
22 | | fvex 6354 |
. . . . . . . 8
⊢
(LSubSp‘𝑊)
∈ V |
23 | 3, 22 | eqeltri 2827 |
. . . . . . 7
⊢ 𝐿 ∈ V |
24 | 23 | inex1 4943 |
. . . . . 6
⊢ (𝐿 ∩ V) ∈
V |
25 | | ovex 6833 |
. . . . . . 7
⊢ (𝑉 ↑𝑚
𝑉) ∈
V |
26 | 25 | inex2 4944 |
. . . . . 6
⊢ (V ∩
(𝑉
↑𝑚 𝑉)) ∈ V |
27 | 24, 26 | xpex 7119 |
. . . . 5
⊢ ((𝐿 ∩ V) × (V ∩
(𝑉
↑𝑚 𝑉))) ∈ V |
28 | | eqid 2752 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
29 | | ovexd 6835 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 → (𝑥𝑃( ⊥ ‘𝑥)) ∈ V) |
30 | 28, 29 | fmpti 6538 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))):𝐿⟶V |
31 | | fssxp 6213 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))):𝐿⟶V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ⊆ (𝐿 × V)) |
32 | | ssrin 3973 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ⊆ (𝐿 × V) → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ⊆ ((𝐿 × V) ∩ (V ×
(𝑉
↑𝑚 𝑉)))) |
33 | 30, 31, 32 | mp2b 10 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ⊆ ((𝐿 × V) ∩ (V ×
(𝑉
↑𝑚 𝑉))) |
34 | | inxp 5402 |
. . . . . 6
⊢ ((𝐿 × V) ∩ (V ×
(𝑉
↑𝑚 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉 ↑𝑚
𝑉))) |
35 | 33, 34 | sseqtri 3770 |
. . . . 5
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ⊆ ((𝐿 ∩ V) × (V ∩
(𝑉
↑𝑚 𝑉))) |
36 | 27, 35 | ssexi 4947 |
. . . 4
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ∈
V |
37 | 20, 21, 36 | fvmpt 6436 |
. . 3
⊢ (𝑊 ∈ V →
(proj‘𝑊) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉)))) |
38 | | fvprc 6338 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(proj‘𝑊) =
∅) |
39 | | inss1 3968 |
. . . . 5
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ⊆ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
40 | | fvprc 6338 |
. . . . . . . 8
⊢ (¬
𝑊 ∈ V →
(LSubSp‘𝑊) =
∅) |
41 | 3, 40 | syl5eq 2798 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V → 𝐿 = ∅) |
42 | 41 | mpteq1d 4882 |
. . . . . 6
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = (𝑥 ∈ ∅ ↦ (𝑥𝑃( ⊥ ‘𝑥)))) |
43 | | mpt0 6174 |
. . . . . 6
⊢ (𝑥 ∈ ∅ ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅ |
44 | 42, 43 | syl6eq 2802 |
. . . . 5
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅) |
45 | | sseq0 4110 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) ⊆ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅) → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) =
∅) |
46 | 39, 44, 45 | sylancr 698 |
. . . 4
⊢ (¬
𝑊 ∈ V → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) =
∅) |
47 | 38, 46 | eqtr4d 2789 |
. . 3
⊢ (¬
𝑊 ∈ V →
(proj‘𝑊) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉)))) |
48 | 37, 47 | pm2.61i 176 |
. 2
⊢
(proj‘𝑊) =
((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) |
49 | 1, 48 | eqtri 2774 |
1
⊢ 𝐾 = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑𝑚
𝑉))) |