Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf2 Structured version   Visualization version   GIF version

Theorem pjf2 20281
 Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)

Proof of Theorem pjf2
StepHypRef Expression
1 eqid 2761 . . 3 (+g𝑊) = (+g𝑊)
2 eqid 2761 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2761 . . 3 (0g𝑊) = (0g𝑊)
4 eqid 2761 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 phllmod 20198 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 472 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2761 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 19181 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 pjf.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2761 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
12 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
1310, 7, 11, 2, 12pjdm2 20278 . . . . 5 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
1413simprbda 654 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
159, 14sseldd 3746 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
1610, 7lssss 19160 . . . . . 6 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
1714, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
1810, 11, 7ocvlss 20239 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
1917, 18syldan 488 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
209, 19sseldd 3746 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
2111, 7, 3ocvin 20241 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2214, 21syldan 488 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
23 lmodabl 19133 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
246, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
254, 24, 15, 20ablcntzd 18481 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
26 eqid 2761 . . 3 (proj1𝑊) = (proj1𝑊)
271, 2, 3, 4, 15, 20, 22, 25, 26pj1f 18331 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇)
2811, 26, 12pjval 20277 . . . . 5 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
2928adantl 473 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
3029eqcomd 2767 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾𝑇))
3113simplbda 655 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)
3230, 31feq12d 6195 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾𝑇):𝑉𝑇))
3327, 32mpbid 222 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ∩ cin 3715   ⊆ wss 3716  {csn 4322  dom cdm 5267  ⟶wf 6046  ‘cfv 6050  (class class class)co 6815  Basecbs 16080  +gcplusg 16164  0gc0g 16323  SubGrpcsubg 17810  Cntzccntz 17969  LSSumclsm 18270  proj1cpj1 18271  Abelcabl 18415  LModclmod 19086  LSubSpclss 19155  PreHilcphl 20192  ocvcocv 20227  projcpj 20267 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-sca 16180  df-vsca 16181  df-ip 16182  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-sbg 17649  df-subg 17813  df-ghm 17880  df-cntz 17971  df-lsm 18272  df-pj1 18273  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-lmod 19088  df-lss 19156  df-lmhm 19245  df-lvec 19326  df-sra 19395  df-rgmod 19396  df-phl 20194  df-ocv 20230  df-pj 20270 This theorem is referenced by:  pjfo  20282
 Copyright terms: Public domain W3C validator