![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjf2 | Structured version Visualization version GIF version |
Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjf2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
2 | eqid 2761 | . . 3 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
3 | eqid 2761 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
4 | eqid 2761 | . . 3 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
5 | phllmod 20198 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
6 | 5 | adantr 472 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
7 | eqid 2761 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
8 | 7 | lsssssubg 19181 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
10 | pjf.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | eqid 2761 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
12 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
13 | 10, 7, 11, 2, 12 | pjdm2 20278 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
14 | 13 | simprbda 654 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
15 | 9, 14 | sseldd 3746 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
16 | 10, 7 | lssss 19160 | . . . . . 6 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
17 | 14, 16 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
18 | 10, 11, 7 | ocvlss 20239 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
19 | 17, 18 | syldan 488 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
20 | 9, 19 | sseldd 3746 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
21 | 11, 7, 3 | ocvin 20241 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
22 | 14, 21 | syldan 488 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
23 | lmodabl 19133 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
24 | 6, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
25 | 4, 24, 15, 20 | ablcntzd 18481 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
26 | eqid 2761 | . . 3 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
27 | 1, 2, 3, 4, 15, 20, 22, 25, 26 | pj1f 18331 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇) |
28 | 11, 26, 12 | pjval 20277 | . . . . 5 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
29 | 28 | adantl 473 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
30 | 29 | eqcomd 2767 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾‘𝑇)) |
31 | 13 | simplbda 655 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉) |
32 | 30, 31 | feq12d 6195 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾‘𝑇):𝑉⟶𝑇)) |
33 | 27, 32 | mpbid 222 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∩ cin 3715 ⊆ wss 3716 {csn 4322 dom cdm 5267 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 0gc0g 16323 SubGrpcsubg 17810 Cntzccntz 17969 LSSumclsm 18270 proj1cpj1 18271 Abelcabl 18415 LModclmod 19086 LSubSpclss 19155 PreHilcphl 20192 ocvcocv 20227 projcpj 20267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-sca 16180 df-vsca 16181 df-ip 16182 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 df-sbg 17649 df-subg 17813 df-ghm 17880 df-cntz 17971 df-lsm 18272 df-pj1 18273 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-lmod 19088 df-lss 19156 df-lmhm 19245 df-lvec 19326 df-sra 19395 df-rgmod 19396 df-phl 20194 df-ocv 20230 df-pj 20270 |
This theorem is referenced by: pjfo 20282 |
Copyright terms: Public domain | W3C validator |