HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem4 Structured version   Visualization version   GIF version

Theorem pjclem4 29392
Description: Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem4 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjclem1.1 . . . . . . . 8 𝐺C
2 pjclem1.2 . . . . . . . 8 𝐻C
31, 2pjcocli 29352 . . . . . . 7 (𝑥 ∈ ℋ → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ 𝐺)
43adantl 467 . . . . . 6 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ 𝐺)
52, 1pjcocli 29352 . . . . . . . 8 (𝑥 ∈ ℋ → (((proj𝐻) ∘ (proj𝐺))‘𝑥) ∈ 𝐻)
6 fveq1 6331 . . . . . . . . 9 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) = (((proj𝐻) ∘ (proj𝐺))‘𝑥))
76eleq1d 2834 . . . . . . . 8 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ 𝐻 ↔ (((proj𝐻) ∘ (proj𝐺))‘𝑥) ∈ 𝐻))
85, 7syl5ibr 236 . . . . . . 7 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → (𝑥 ∈ ℋ → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ 𝐻))
98imp 393 . . . . . 6 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ 𝐻)
104, 9elind 3947 . . . . 5 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ (𝐺𝐻))
111, 2pjcohcli 29353 . . . . . . . 8 (𝑥 ∈ ℋ → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ)
12 hvsubcl 28208 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ) → (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
1311, 12mpdan 659 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
1413adantl 467 . . . . . 6 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
15 simpl 468 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → 𝑥 ∈ ℋ)
1611adantr 466 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ)
171, 2chincli 28653 . . . . . . . . . . . . . 14 (𝐺𝐻) ∈ C
1817cheli 28423 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐺𝐻) → 𝑦 ∈ ℋ)
1918adantl 467 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → 𝑦 ∈ ℋ)
2015, 16, 193jca 1121 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → (𝑥 ∈ ℋ ∧ (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
2120adantl 467 . . . . . . . . . 10 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → (𝑥 ∈ ℋ ∧ (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
22 his2sub 28283 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = ((𝑥 ·ih 𝑦) − ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
2321, 22syl 17 . . . . . . . . 9 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = ((𝑥 ·ih 𝑦) − ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
246oveq1d 6807 . . . . . . . . . . 11 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) = ((((proj𝐻) ∘ (proj𝐺))‘𝑥) ·ih 𝑦))
252, 1pjadjcoi 29354 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((proj𝐻) ∘ (proj𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((proj𝐺) ∘ (proj𝐻))‘𝑦)))
2618, 25sylan2 572 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → ((((proj𝐻) ∘ (proj𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((proj𝐺) ∘ (proj𝐻))‘𝑦)))
271, 2pjclem4a 29391 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐺𝐻) → (((proj𝐺) ∘ (proj𝐻))‘𝑦) = 𝑦)
2827oveq2d 6808 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐺𝐻) → (𝑥 ·ih (((proj𝐺) ∘ (proj𝐻))‘𝑦)) = (𝑥 ·ih 𝑦))
2928adantl 467 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → (𝑥 ·ih (((proj𝐺) ∘ (proj𝐻))‘𝑦)) = (𝑥 ·ih 𝑦))
3026, 29eqtrd 2804 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → ((((proj𝐻) ∘ (proj𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih 𝑦))
3124, 30sylan9eq 2824 . . . . . . . . . 10 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) = (𝑥 ·ih 𝑦))
3231oveq1d 6807 . . . . . . . . 9 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → (((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) − ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)) = ((𝑥 ·ih 𝑦) − ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
3311, 18anim12i 592 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻)) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
3433adantl 467 . . . . . . . . . . 11 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
35 hicl 28271 . . . . . . . . . . 11 (((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) ∈ ℂ)
3634, 35syl 17 . . . . . . . . . 10 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) ∈ ℂ)
3736subidd 10581 . . . . . . . . 9 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → (((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) − ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)) = 0)
3823, 32, 373eqtr2d 2810 . . . . . . . 8 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ (𝐺𝐻))) → ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)
3938expr 444 . . . . . . 7 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (𝑦 ∈ (𝐺𝐻) → ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0))
4039ralrimiv 3113 . . . . . 6 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → ∀𝑦 ∈ (𝐺𝐻)((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)
4117chshii 28418 . . . . . . 7 (𝐺𝐻) ∈ S
42 shocel 28475 . . . . . . 7 ((𝐺𝐻) ∈ S → ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘(𝐺𝐻)) ↔ ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ ℋ ∧ ∀𝑦 ∈ (𝐺𝐻)((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)))
4341, 42ax-mp 5 . . . . . 6 ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘(𝐺𝐻)) ↔ ((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ ℋ ∧ ∀𝑦 ∈ (𝐺𝐻)((𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0))
4414, 40, 43sylanbrc 564 . . . . 5 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘(𝐺𝐻)))
4517pjvi 28898 . . . . 5 (((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ (𝐺𝐻) ∧ (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘(𝐺𝐻))) → ((proj‘(𝐺𝐻))‘((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)))) = (((proj𝐺) ∘ (proj𝐻))‘𝑥))
4610, 44, 45syl2anc 565 . . . 4 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → ((proj‘(𝐺𝐻))‘((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)))) = (((proj𝐺) ∘ (proj𝐻))‘𝑥))
47 id 22 . . . . . . . 8 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
48 hvaddsub12 28229 . . . . . . . 8 (((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ (((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ) → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥))) = (𝑥 + ((((proj𝐺) ∘ (proj𝐻))‘𝑥) − (((proj𝐺) ∘ (proj𝐻))‘𝑥))))
4911, 47, 11, 48syl3anc 1475 . . . . . . 7 (𝑥 ∈ ℋ → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥))) = (𝑥 + ((((proj𝐺) ∘ (proj𝐻))‘𝑥) − (((proj𝐺) ∘ (proj𝐻))‘𝑥))))
50 hvsubid 28217 . . . . . . . . 9 ((((proj𝐺) ∘ (proj𝐻))‘𝑥) ∈ ℋ → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) − (((proj𝐺) ∘ (proj𝐻))‘𝑥)) = 0)
5111, 50syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) − (((proj𝐺) ∘ (proj𝐻))‘𝑥)) = 0)
5251oveq2d 6808 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 + ((((proj𝐺) ∘ (proj𝐻))‘𝑥) − (((proj𝐺) ∘ (proj𝐻))‘𝑥))) = (𝑥 + 0))
53 ax-hvaddid 28195 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
5449, 52, 533eqtrd 2808 . . . . . 6 (𝑥 ∈ ℋ → ((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥))) = 𝑥)
5554fveq2d 6336 . . . . 5 (𝑥 ∈ ℋ → ((proj‘(𝐺𝐻))‘((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)))) = ((proj‘(𝐺𝐻))‘𝑥))
5655adantl 467 . . . 4 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → ((proj‘(𝐺𝐻))‘((((proj𝐺) ∘ (proj𝐻))‘𝑥) + (𝑥 (((proj𝐺) ∘ (proj𝐻))‘𝑥)))) = ((proj‘(𝐺𝐻))‘𝑥))
5746, 56eqtr3d 2806 . . 3 ((((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ∧ 𝑥 ∈ ℋ) → (((proj𝐺) ∘ (proj𝐻))‘𝑥) = ((proj‘(𝐺𝐻))‘𝑥))
5857ralrimiva 3114 . 2 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ∀𝑥 ∈ ℋ (((proj𝐺) ∘ (proj𝐻))‘𝑥) = ((proj‘(𝐺𝐻))‘𝑥))
591pjfi 28897 . . . 4 (proj𝐺): ℋ⟶ ℋ
602pjfi 28897 . . . 4 (proj𝐻): ℋ⟶ ℋ
6159, 60hocofi 28959 . . 3 ((proj𝐺) ∘ (proj𝐻)): ℋ⟶ ℋ
6217pjfi 28897 . . 3 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
6361, 62hoeqi 28954 . 2 (∀𝑥 ∈ ℋ (((proj𝐺) ∘ (proj𝐻))‘𝑥) = ((proj‘(𝐺𝐻))‘𝑥) ↔ ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
6458, 63sylib 208 1 (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  cin 3720  ccom 5253  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137  cmin 10467  chil 28110   + cva 28111   ·ih csp 28113  0c0v 28115   cmv 28116   S csh 28119   C cch 28120  cort 28121  projcpjh 28128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217  ax-hilex 28190  ax-hfvadd 28191  ax-hvcom 28192  ax-hvass 28193  ax-hv0cl 28194  ax-hvaddid 28195  ax-hfvmul 28196  ax-hvmulid 28197  ax-hvmulass 28198  ax-hvdistr1 28199  ax-hvdistr2 28200  ax-hvmul0 28201  ax-hfi 28270  ax-his1 28273  ax-his2 28274  ax-his3 28275  ax-his4 28276  ax-hcompl 28393
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-cn 21251  df-cnp 21252  df-lm 21253  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cfil 23271  df-cau 23272  df-cmet 23273  df-grpo 27681  df-gid 27682  df-ginv 27683  df-gdiv 27684  df-ablo 27733  df-vc 27748  df-nv 27781  df-va 27784  df-ba 27785  df-sm 27786  df-0v 27787  df-vs 27788  df-nmcv 27789  df-ims 27790  df-dip 27890  df-ssp 27911  df-ph 28002  df-cbn 28053  df-hnorm 28159  df-hba 28160  df-hvsub 28162  df-hlim 28163  df-hcau 28164  df-sh 28398  df-ch 28412  df-oc 28443  df-ch0 28444  df-shs 28501  df-pjh 28588
This theorem is referenced by:  pjci  29393  pjcmul1i  29394  pjcmul2i  29395
  Copyright terms: Public domain W3C validator