![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimltpnf2.1 | ⊢ Ⅎ𝑥𝐹 |
pimltpnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimltpnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1995 | . . . 4 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
4 | pimltpnf2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2913 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6341 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥+∞ | |
9 | 6, 7, 8 | nfbr 4834 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
10 | fveq2 6333 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq1d 4797 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
12 | 1, 2, 3, 9, 11 | cbvrab 3348 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞}) |
14 | nfv 1995 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
15 | pimltpnf2.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
16 | 15 | ffvelrnda 6504 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
17 | 14, 16 | pimltpnf 41433 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
18 | 13, 17 | eqtrd 2805 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 Ⅎwnfc 2900 {crab 3065 class class class wbr 4787 ⟶wf 6026 ‘cfv 6030 ℝcr 10141 +∞cpnf 10277 < clt 10280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-pnf 10282 df-xr 10284 df-ltxr 10285 |
This theorem is referenced by: smfpimltxr 41473 |
Copyright terms: Public domain | W3C validator |