![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimltpnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimltpnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimltpnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3828 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴) |
3 | pimltpnf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | pimltpnf.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | ltpnf 12147 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
8 | 4, 7 | jca 555 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) |
9 | rabid 3254 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) | |
10 | 8, 9 | sylibr 224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
11 | 10 | ex 449 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞})) |
12 | 3, 11 | ralrimi 3095 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
13 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
14 | nfrab1 3261 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} | |
15 | 13, 14 | dfss3f 3736 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
16 | 12, 15 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
17 | 2, 16 | eqssd 3761 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 ∀wral 3050 {crab 3054 ⊆ wss 3715 class class class wbr 4804 ℝcr 10127 +∞cpnf 10263 < clt 10266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-pnf 10268 df-xr 10270 df-ltxr 10271 |
This theorem is referenced by: pimltpnf2 41429 |
Copyright terms: Public domain | W3C validator |