Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioc Structured version   Visualization version   GIF version

Theorem pimincfltioc 41440
Description: Given a non decreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioc.x 𝑥𝜑
pimincfltioc.h 𝑦𝜑
pimincfltioc.a (𝜑𝐴 ⊆ ℝ)
pimincfltioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioc.r (𝜑𝑅 ∈ ℝ*)
pimincfltioc.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioc.e (𝜑𝑆𝑌)
pimincfltioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimincfltioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimincfltioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimincfltioc.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 3834 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 3782 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3760 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioc.e . . . 4 (𝜑𝑆𝑌)
9 pimincfltioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 40293 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 3983 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioc.x . . . 4 𝑥𝜑
13 elinel2 3949 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimincfltioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
1615adantr 466 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
1716, 14ffvelrnd 6503 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
183, 8sseldi 3748 . . . . . . . . . 10 (𝜑𝑆𝐴)
1915, 18ffvelrnd 6503 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
21 pimincfltioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
2221adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
23 eleq1w 2832 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧 ∈ (𝐼𝐴) ↔ 𝑥 ∈ (𝐼𝐴)))
2423anbi2d 606 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝜑𝑧 ∈ (𝐼𝐴)) ↔ (𝜑𝑥 ∈ (𝐼𝐴))))
25 fveq2 6332 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2625breq1d 4794 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑧) ≤ (𝐹𝑆) ↔ (𝐹𝑥) ≤ (𝐹𝑆)))
2724, 26imbi12d 333 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆)) ↔ ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))))
28 nfv 1994 . . . . . . . . . . 11 𝑥 𝑧 ∈ (𝐼𝐴)
2912, 28nfan 1979 . . . . . . . . . 10 𝑥(𝜑𝑧 ∈ (𝐼𝐴))
30 pimincfltioc.h . . . . . . . . . . 11 𝑦𝜑
31 nfv 1994 . . . . . . . . . . 11 𝑦 𝑧 ∈ (𝐼𝐴)
3230, 31nfan 1979 . . . . . . . . . 10 𝑦(𝜑𝑧 ∈ (𝐼𝐴))
33 pimincfltioc.i . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3433adantr 466 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
35 elinel2 3949 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐴)
3635adantl 467 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝐴)
3718adantr 466 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆𝐴)
38 mnfxr 10297 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
40 ressxr 10284 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
416, 8sseldd 3751 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
4240, 41sseldi 3748 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
4342adantr 466 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
44 elinel1 3948 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐼)
4544, 9syl6eleq 2859 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼𝐴) → 𝑧 ∈ (-∞(,]𝑆))
4645adantl 467 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧 ∈ (-∞(,]𝑆))
47 iocleub 40240 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑧 ∈ (-∞(,]𝑆)) → 𝑧𝑆)
4839, 43, 46, 47syl3anc 1475 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝑆)
4929, 32, 34, 36, 37, 48dmrelrnrel 39931 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆))
5027, 49chvarv 2424 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))
51 fveq2 6332 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
5251breq1d 4794 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑆) < 𝑅))
5352, 1elrab2 3516 . . . . . . . . . . 11 (𝑆𝑌 ↔ (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
548, 53sylib 208 . . . . . . . . . 10 (𝜑 → (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
5554simprd 477 . . . . . . . . 9 (𝜑 → (𝐹𝑆) < 𝑅)
5655adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) < 𝑅)
5717, 20, 22, 50, 56xrlelttrd 12195 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
5814, 57jca 495 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
591rabeq2i 3346 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
6058, 59sylibr 224 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6160ex 397 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6212, 61ralrimi 3105 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6328nfci 2902 . . . 4 𝑥(𝐼𝐴)
64 nfrab1 3270 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
651, 64nfcxfr 2910 . . . 4 𝑥𝑌
6663, 65dfss3f 3742 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6762, 66sylibr 224 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
6811, 67eqssd 3767 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wnf 1855  wcel 2144  wral 3060  {crab 3064  cin 3720  wss 3721   class class class wbr 4784  wf 6027  cfv 6031  (class class class)co 6792  supcsup 8501  cr 10136  -∞cmnf 10273  *cxr 10274   < clt 10275  cle 10276  (,]cioc 12380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-ioc 12384
This theorem is referenced by:  incsmflem  41464
  Copyright terms: Public domain W3C validator