![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf2.1 | ⊢ Ⅎ𝑥𝐹 |
pimgtmnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimgtmnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3720 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ⊆ 𝐴) |
3 | ssid 3657 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
5 | pimgtmnf2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
6 | 5 | ffvelrnda 6399 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
7 | 6 | mnfltd 11996 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ < (𝐹‘𝑦)) |
8 | 7 | ralrimiva 2995 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦)) |
9 | nfcv 2793 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
10 | nfcv 2793 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
11 | pimgtmnf2.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
12 | nfcv 2793 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
13 | 11, 12 | nffv 6236 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
14 | 9, 10, 13 | nfbr 4732 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
15 | nfv 1883 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
16 | fveq2 6229 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
17 | 16 | breq2d 4697 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (-∞ < (𝐹‘𝑦) ↔ -∞ < (𝐹‘𝑥))) |
18 | 14, 15, 17 | cbvral 3197 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 -∞ < (𝐹‘𝑦) ↔ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
19 | 8, 18 | sylib 208 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥)) |
20 | 4, 19 | jca 553 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
21 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
22 | 21, 21 | ssrabf 39612 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 -∞ < (𝐹‘𝑥))) |
23 | 20, 22 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)}) |
24 | 2, 23 | eqssd 3653 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ∀wral 2941 {crab 2945 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 -∞cmnf 10110 < clt 10112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 |
This theorem is referenced by: pimgtmnf 41253 |
Copyright terms: Public domain | W3C validator |