MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Visualization version   GIF version

Theorem pi1xfrcnvlem 23075
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnvlem (𝜑𝐺𝐻)
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 fvex 6342 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 7900 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
5 ecexg 7900 . . . . 5 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
62, 5mp1i 13 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
71, 4, 6fliftcnv 6704 . . 3 (𝜑𝐺 = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
8 pi1xfr.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pi1xfr.i . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
109pcorevcl 23044 . . . . . . . . . . 11 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
118, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
1211simp1d 1136 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐽))
1312adantr 466 . . . . . . . 8 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
14 pi1xfr.p . . . . . . . . . . . 12 𝑃 = (𝐽 π1 (𝐹‘0))
15 pi1xfr.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 iitopon 22902 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
1716a1i 11 . . . . . . . . . . . . . 14 (𝜑 → II ∈ (TopOn‘(0[,]1)))
18 cnf2 21274 . . . . . . . . . . . . . 14 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
1917, 15, 8, 18syl3anc 1476 . . . . . . . . . . . . 13 (𝜑𝐹:(0[,]1)⟶𝑋)
20 0elunit 12497 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
21 ffvelrn 6500 . . . . . . . . . . . . 13 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
2219, 20, 21sylancl 574 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) ∈ 𝑋)
23 pi1xfr.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑃)
2423a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝑃))
2514, 15, 22, 24pi1eluni 23061 . . . . . . . . . . 11 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
2625biimpa 462 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
2726simp1d 1136 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
288adantr 466 . . . . . . . . 9 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
2926simp3d 1138 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
3027, 28, 29pcocn 23036 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3111simp3d 1138 . . . . . . . . . . 11 (𝜑 → (𝐼‘1) = (𝐹‘0))
3231adantr 466 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3326simp2d 1137 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
3432, 33eqtr4d 2808 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝑔‘0))
3527, 28pco0 23033 . . . . . . . . 9 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
3634, 35eqtr4d 2808 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3713, 30, 36pcocn 23036 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3813, 30pco0 23033 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
3911simp2d 1137 . . . . . . . . 9 (𝜑 → (𝐼‘0) = (𝐹‘1))
4039adantr 466 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐼‘0) = (𝐹‘1))
4138, 40eqtrd 2805 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4213, 30pco1 23034 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4327, 28pco1 23034 . . . . . . . 8 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4442, 43eqtrd 2805 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
45 pi1xfr.q . . . . . . . . 9 𝑄 = (𝐽 π1 (𝐹‘1))
46 1elunit 12498 . . . . . . . . . 10 1 ∈ (0[,]1)
47 ffvelrn 6500 . . . . . . . . . 10 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
4819, 46, 47sylancl 574 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ 𝑋)
49 eqidd 2772 . . . . . . . . 9 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
5045, 15, 48, 49pi1eluni 23061 . . . . . . . 8 (𝜑 → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5150adantr 466 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
5237, 41, 44, 51mpbir3and 1427 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
53 eqidd 2772 . . . . . 6 (𝜑 → (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))) = (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))))
54 eqidd 2772 . . . . . 6 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
55 eceq1 7934 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → []( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽))
56 oveq1 6800 . . . . . . . . 9 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ((*𝑝𝐽)𝐼) = ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
5756oveq2d 6809 . . . . . . . 8 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
5857eceq1d 7935 . . . . . . 7 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽))
5955, 58opeq12d 4547 . . . . . 6 ( = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
6052, 53, 54, 59fmptco 6539 . . . . 5 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
61 phtpcer 23014 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
6261a1i 11 . . . . . . . 8 ((𝜑𝑔 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
6313, 27pco0 23033 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)𝑔)‘0) = (𝐼‘0))
6463, 40eqtr2d 2806 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)𝑔)‘0))
6562, 28erref 7916 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → 𝐹( ≃ph𝐽)𝐹)
6662, 13erref 7916 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝐼( ≃ph𝐽)𝐼)
67 eqid 2771 . . . . . . . . . . . . . . 15 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
6867pcopt2 23042 . . . . . . . . . . . . . 14 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘1) = (𝐹‘0)) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
6927, 29, 68syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)𝑔)
7040eqcomd 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
71 eqid 2771 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
7227, 28, 13, 29, 70, 71pcoass 23043 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼)))
7328, 13pco0 23033 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘0) = (𝐹‘0))
7429, 73eqtr4d 2808 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝑔‘1) = ((𝐹(*𝑝𝐽)𝐼)‘0))
7562, 27erref 7916 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)𝑔)
769, 67pcorev2 23047 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7728, 76syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
7874, 75, 77pcohtpy 23039 . . . . . . . . . . . . . 14 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)(𝐹(*𝑝𝐽)𝐼))( ≃ph𝐽)(𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)})))
7962, 72, 78ertr2d 7913 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)((0[,]1) × {(𝐹‘0)}))( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8062, 69, 79ertr3d 7914 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → 𝑔( ≃ph𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼))
8134, 66, 80pcohtpy 23039 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8243, 40eqtr4d 2808 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐼‘0))
8313, 30, 13, 36, 82, 71pcoass 23043 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑔(*𝑝𝐽)𝐹)(*𝑝𝐽)𝐼)))
8462, 81, 83ertr4d 7915 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)𝑔)( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))
8564, 65, 84pcohtpy 23039 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼)))
8628, 13, 27, 70, 34, 71pcoass 23043 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔)))
8728, 13pco1 23034 . . . . . . . . . . . . 13 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8887, 34eqtrd 2805 . . . . . . . . . . . 12 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝑔‘0))
8988, 77, 75pcohtpy 23039 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔))
9067pcopt 23041 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9127, 33, 90syl2anc 573 . . . . . . . . . . 11 ((𝜑𝑔 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9262, 89, 91ertrd 7912 . . . . . . . . . 10 ((𝜑𝑔 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)𝑔)( ≃ph𝐽)𝑔)
9362, 86, 92ertr3d 7914 . . . . . . . . 9 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)𝑔))( ≃ph𝐽)𝑔)
9462, 85, 93ertr3d 7914 . . . . . . . 8 ((𝜑𝑔 𝐵) → (𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))( ≃ph𝐽)𝑔)
9562, 94erthi 7945 . . . . . . 7 ((𝜑𝑔 𝐵) → [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽) = [𝑔]( ≃ph𝐽))
9695opeq2d 4546 . . . . . 6 ((𝜑𝑔 𝐵) → ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩)
9796mpteq2dva 4878 . . . . 5 (𝜑 → (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9860, 97eqtrd 2805 . . . 4 (𝜑 → (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
9998rneqd 5491 . . 3 (𝜑 → ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) = ran (𝑔 𝐵 ↦ ⟨[(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽), [𝑔]( ≃ph𝐽)⟩))
1007, 99eqtr4d 2808 . 2 (𝜑𝐺 = ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))))
101 rncoss 5524 . . 3 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
102 pi1xfrcnv.h . . 3 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
103101, 102sseqtr4i 3787 . 2 ran (( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∘ (𝑔 𝐵 ↦ (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)))) ⊆ 𝐻
104100, 103syl6eqss 3804 1 (𝜑𝐺𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  ifcif 4225  {csn 4316  cop 4322   cuni 4574   class class class wbr 4786  cmpt 4863   × cxp 5247  ccnv 5248  ran crn 5250  ccom 5253  wf 6027  cfv 6031  (class class class)co 6793   Er wer 7893  [cec 7894  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cle 10277  cmin 10468   / cdiv 10886  2c2 11272  4c4 11274  [,]cicc 12383  Basecbs 16064  TopOnctopon 20935   Cn ccn 21249  IIcii 22898  phcphtpc 22988  *𝑝cpco 23019   π1 cpi1 23022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-qus 16377  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-ii 22900  df-htpy 22989  df-phtpy 22990  df-phtpc 23011  df-pco 23024  df-om1 23025  df-pi1 23027
This theorem is referenced by:  pi1xfrcnv  23076
  Copyright terms: Public domain W3C validator