MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   GIF version

Theorem pi1grplem 23067
Description: Lemma for pi1grp 23068. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g 𝐺 = (𝐽 π1 𝑌)
pi1fval.b 𝐵 = (Base‘𝐺)
pi1fval.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1fval.4 (𝜑𝑌𝑋)
pi1grplem.z 0 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pi1grplem (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))

Proof of Theorem pi1grplem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5 𝐺 = (𝐽 π1 𝑌)
2 pi1fval.3 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 pi1fval.4 . . . . 5 (𝜑𝑌𝑋)
4 eqid 2770 . . . . 5 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
51, 2, 3, 4pi1val 23055 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
6 pi1fval.b . . . . . 6 𝐵 = (Base‘𝐺)
76a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝐺))
8 eqidd 2771 . . . . 5 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
91, 2, 3, 4, 7, 8pi1buni 23058 . . . 4 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
10 fvexd 6344 . . . 4 (𝜑 → ( ≃ph𝐽) ∈ V)
11 ovexd 6824 . . . 4 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
121, 2, 3, 4, 7, 9pi1blem 23057 . . . . 5 (𝜑 → ((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 𝐵 ⊆ (II Cn 𝐽)))
1312simpld 476 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
145, 9, 10, 11, 13qusin 16411 . . 3 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
154, 2, 3om1plusg 23052 . . 3 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
16 phtpcer 23013 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
1716a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
1812simprd 477 . . . 4 (𝜑 𝐵 ⊆ (II Cn 𝐽))
1917, 18erinxp 7972 . . 3 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
20 eqid 2770 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
21 eqid 2770 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
221, 2, 3, 7, 20, 4, 21pi1cpbl 23062 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2315oveqd 6809 . . . . 5 (𝜑 → (𝑎(*𝑝𝐽)𝑏) = (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏))
2415oveqd 6809 . . . . 5 (𝜑 → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
2523, 24breq12d 4797 . . . 4 (𝜑 → ((𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑) ↔ (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2622, 25sylibrd 249 . . 3 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑)))
2723ad2ant1 1126 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
2833ad2ant1 1126 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑌𝑋)
2993ad2ant1 1126 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
30 simp2 1130 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑥 𝐵)
31 simp3 1131 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑦 𝐵)
324, 27, 28, 29, 30, 31om1addcl 23051 . . 3 ((𝜑𝑥 𝐵𝑦 𝐵) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
332adantr 466 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
343adantr 466 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑌𝑋)
359adantr 466 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
36323adant3r3 1198 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
37 simpr3 1236 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 𝐵)
384, 33, 34, 35, 36, 37om1addcl 23051 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵)
39 simpr1 1232 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 𝐵)
40 simpr2 1234 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 𝐵)
414, 33, 34, 35, 40, 37om1addcl 23051 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦(*𝑝𝐽)𝑧) ∈ 𝐵)
424, 33, 34, 35, 39, 41om1addcl 23051 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵)
431, 2, 3, 7pi1eluni 23060 . . . . . . . 8 (𝜑 → (𝑥 𝐵 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
4443biimpa 462 . . . . . . 7 ((𝜑𝑥 𝐵) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
45443ad2antr1 1202 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
4645simp1d 1135 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 ∈ (II Cn 𝐽))
476a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘𝐺))
481, 33, 34, 47pi1eluni 23060 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 𝐵 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
4940, 48mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
5049simp1d 1135 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 ∈ (II Cn 𝐽))
511, 33, 34, 47pi1eluni 23060 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 𝐵 ↔ (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌)))
5237, 51mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌))
5352simp1d 1135 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 ∈ (II Cn 𝐽))
5445simp3d 1137 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = 𝑌)
5549simp2d 1136 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘0) = 𝑌)
5654, 55eqtr4d 2807 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = (𝑦‘0))
5749simp3d 1137 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = 𝑌)
5852simp2d 1136 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧‘0) = 𝑌)
5957, 58eqtr4d 2807 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = (𝑧‘0))
60 eqid 2770 . . . . 5 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
6146, 50, 53, 56, 59, 60pcoass 23042 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
62 brinxp2 5320 . . . 4 (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ↔ (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵 ∧ (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵 ∧ ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧))))
6338, 42, 61, 62syl3anbrc 1427 . . 3 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
64 pi1grplem.z . . . . . 6 0 = ((0[,]1) × {𝑌})
6564pcoptcl 23039 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
662, 3, 65syl2anc 565 . . . 4 (𝜑 → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
671, 2, 3, 7pi1eluni 23060 . . . 4 (𝜑 → ( 0 𝐵 ↔ ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌)))
6866, 67mpbird 247 . . 3 (𝜑0 𝐵)
692adantr 466 . . . . 5 ((𝜑𝑥 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
703adantr 466 . . . . 5 ((𝜑𝑥 𝐵) → 𝑌𝑋)
719adantr 466 . . . . 5 ((𝜑𝑥 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
7268adantr 466 . . . . 5 ((𝜑𝑥 𝐵) → 0 𝐵)
73 simpr 471 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 𝐵)
744, 69, 70, 71, 72, 73om1addcl 23051 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥) ∈ 𝐵)
7518sselda 3750 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 ∈ (II Cn 𝐽))
7644simp2d 1136 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘0) = 𝑌)
7764pcopt 23040 . . . . 5 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
7875, 76, 77syl2anc 565 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
79 brinxp2 5320 . . . 4 (( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥 ↔ (( 0 (*𝑝𝐽)𝑥) ∈ 𝐵𝑥 𝐵 ∧ ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥))
8074, 73, 78, 79syl3anbrc 1427 . . 3 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥)
81 eqid 2770 . . . . . . 7 (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) = (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))
8281pcorevcl 23043 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8375, 82syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8483simp1d 1135 . . . 4 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽))
8583simp2d 1136 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1))
8644simp3d 1137 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘1) = 𝑌)
8785, 86eqtrd 2804 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌)
8883simp3d 1137 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0))
8988, 76eqtrd 2804 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)
901, 2, 3, 7pi1eluni 23060 . . . . 5 (𝜑 → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9190adantr 466 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9284, 87, 89, 91mpbir3and 1426 . . 3 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵)
934, 69, 70, 71, 92, 73om1addcl 23051 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵)
94 eqid 2770 . . . . . . 7 ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {(𝑥‘1)})
9581, 94pcorev 23045 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9675, 95syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9786sneqd 4326 . . . . . . 7 ((𝜑𝑥 𝐵) → {(𝑥‘1)} = {𝑌})
9897xpeq2d 5279 . . . . . 6 ((𝜑𝑥 𝐵) → ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {𝑌}))
9998, 64syl6reqr 2823 . . . . 5 ((𝜑𝑥 𝐵) → 0 = ((0[,]1) × {(𝑥‘1)}))
10096, 99breqtrrd 4812 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 )
101 brinxp2 5320 . . . 4 (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 ↔ (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵0 𝐵 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 ))
10293, 72, 100, 101syl3anbrc 1427 . . 3 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 )
10314, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102qusgrp2 17740 . 2 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
104 ecinxp 7973 . . . . 5 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵0 𝐵) → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
10513, 68, 104syl2anc 565 . . . 4 (𝜑 → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
106105eqeq1d 2772 . . 3 (𝜑 → ([ 0 ]( ≃ph𝐽) = (0g𝐺) ↔ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
107106anbi2d 606 . 2 (𝜑 → ((𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)) ↔ (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺))))
108103, 107mpbird 247 1 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  Vcvv 3349  cin 3720  wss 3721  ifcif 4223  {csn 4314   cuni 4572   class class class wbr 4784  cmpt 4861   × cxp 5247  cima 5252  cfv 6031  (class class class)co 6792   Er wer 7892  [cec 7893  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  cle 10276  cmin 10467   / cdiv 10885  2c2 11271  4c4 11273  [,]cicc 12382  Basecbs 16063  +gcplusg 16148  0gc0g 16307  Grpcgrp 17629  TopOnctopon 20934   Cn ccn 21248  IIcii 22897  phcphtpc 22987  *𝑝cpco 23018   Ω1 comi 23019   π1 cpi1 23021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-qus 16376  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-cn 21251  df-cnp 21252  df-tx 21585  df-hmeo 21778  df-xms 22344  df-ms 22345  df-tms 22346  df-ii 22899  df-htpy 22988  df-phtpy 22989  df-phtpc 23010  df-pco 23023  df-om1 23024  df-pi1 23026
This theorem is referenced by:  pi1grp  23068  pi1id  23069  pi1inv  23070
  Copyright terms: Public domain W3C validator