Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cpbl Structured version   Visualization version   GIF version

Theorem pi1cpbl 23063
 Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1bas2.b (𝜑𝐵 = (Base‘𝐺))
pi1bas3.r 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
pi1cpbl.o 𝑂 = (𝐽 Ω1 𝑌)
pi1cpbl.a + = (+g𝑂)
Assertion
Ref Expression
pi1cpbl (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))

Proof of Theorem pi1cpbl
StepHypRef Expression
1 pi1cpbl.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
2 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
32adantr 466 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋))
4 pi1val.2 . . . . . 6 (𝜑𝑌𝑋)
54adantr 466 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑌𝑋)
6 pi1val.g . . . . . 6 𝐺 = (𝐽 π1 𝑌)
7 pi1bas2.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
87adantr 466 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺))
9 eqidd 2772 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂))
106, 3, 5, 1, 8, 9pi1buni 23059 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝑂))
11 simprl 754 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀𝑅𝑁)
12 pi1bas3.r . . . . . . . . 9 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
1312breqi 4792 . . . . . . . 8 (𝑀𝑅𝑁𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁)
14 brinxp2 5320 . . . . . . . 8 (𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1513, 14bitri 264 . . . . . . 7 (𝑀𝑅𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1611, 15sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1716simp1d 1136 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀 𝐵)
18 simprr 756 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃𝑅𝑄)
1912breqi 4792 . . . . . . . 8 (𝑃𝑅𝑄𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄)
20 brinxp2 5320 . . . . . . . 8 (𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2119, 20bitri 264 . . . . . . 7 (𝑃𝑅𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2218, 21sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2322simp1d 1136 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃 𝐵)
241, 3, 5, 10, 17, 23om1addcl 23052 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) ∈ 𝐵)
2516simp2d 1137 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑁 𝐵)
2622simp2d 1137 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑄 𝐵)
271, 3, 5, 10, 25, 26om1addcl 23052 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵)
286, 3, 5, 8pi1eluni 23061 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)))
2917, 28mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))
3029simp3d 1138 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌)
316, 3, 5, 8pi1eluni 23061 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)))
3223, 31mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp2d 1137 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌)
3430, 33eqtr4d 2808 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0))
3516simp3d 1138 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀( ≃ph𝐽)𝑁)
3622simp3d 1138 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃( ≃ph𝐽)𝑄)
3734, 35, 36pcohtpy 23039 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄))
3812breqi 4792 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ (𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄))
39 brinxp2 5320 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4038, 39bitri 264 . . . 4 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4124, 27, 37, 40syl3anbrc 1428 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄))
421, 3, 5om1plusg 23053 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = (+g𝑂))
43 pi1cpbl.a . . . . 5 + = (+g𝑂)
4442, 43syl6eqr 2823 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = + )
4544oveqd 6810 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) = (𝑀 + 𝑃))
4644oveqd 6810 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) = (𝑁 + 𝑄))
4741, 45, 463brtr3d 4817 . 2 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))
4847ex 397 1 (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ∩ cin 3722  ∪ cuni 4574   class class class wbr 4786   × cxp 5247  ‘cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139  Basecbs 16064  +gcplusg 16149  TopOnctopon 20935   Cn ccn 21249  IIcii 22898   ≃phcphtpc 22988  *𝑝cpco 23019   Ω1 comi 23020   π1 cpi1 23022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-mulf 10218 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-qus 16377  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-ii 22900  df-htpy 22989  df-phtpy 22990  df-phtpc 23011  df-pco 23024  df-om1 23025  df-pi1 23027 This theorem is referenced by:  pi1addf  23066  pi1addval  23067  pi1grplem  23068
 Copyright terms: Public domain W3C validator