MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Visualization version   GIF version

Theorem pi1blem 23058
Description: Lemma for pi1buni 23059. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
pi1bas.b (𝜑𝐵 = (Base‘𝐺))
pi1bas.k (𝜑𝐾 = (Base‘𝑂))
Assertion
Ref Expression
pi1blem (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))

Proof of Theorem pi1blem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3354 . . . . 5 𝑥 ∈ V
21elima 5611 . . . 4 (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) ↔ ∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥)
3 simpr 471 . . . . . . . . 9 ((𝜑𝑦( ≃ph𝐽)𝑥) → 𝑦( ≃ph𝐽)𝑥)
4 isphtpc 23013 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
53, 4sylib 208 . . . . . . . 8 ((𝜑𝑦( ≃ph𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
65adantrl 695 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
76simp2d 1137 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽))
8 phtpc01 23015 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
98ad2antll 708 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
109simpld 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0))
11 pi1val.o . . . . . . . . . . 11 𝑂 = (𝐽 Ω1 𝑌)
12 pi1val.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 pi1val.2 . . . . . . . . . . 11 (𝜑𝑌𝑋)
14 pi1bas.k . . . . . . . . . . 11 (𝜑𝐾 = (Base‘𝑂))
1511, 12, 13, 14om1elbas 23051 . . . . . . . . . 10 (𝜑 → (𝑦𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
1615biimpa 462 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1716adantrr 696 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1817simp2d 1137 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = 𝑌)
1910, 18eqtr3d 2807 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘0) = 𝑌)
209simprd 483 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1))
2117simp3d 1138 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = 𝑌)
2220, 21eqtr3d 2807 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘1) = 𝑌)
2311, 12, 13, 14om1elbas 23051 . . . . . . 7 (𝜑 → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
2423adantr 466 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
257, 19, 22, 24mpbir3and 1427 . . . . 5 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥𝐾)
2625rexlimdvaa 3180 . . . 4 (𝜑 → (∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥𝑥𝐾))
272, 26syl5bi 232 . . 3 (𝜑 → (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) → 𝑥𝐾))
2827ssrdv 3758 . 2 (𝜑 → (( ≃ph𝐽) “ 𝐾) ⊆ 𝐾)
29 simp1 1130 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽))
3023, 29syl6bi 243 . . 3 (𝜑 → (𝑥𝐾𝑥 ∈ (II Cn 𝐽)))
3130ssrdv 3758 . 2 (𝜑𝐾 ⊆ (II Cn 𝐽))
3228, 31jca 501 1 (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  wss 3723  c0 4063   class class class wbr 4787  cima 5253  cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143  Basecbs 16064  TopOnctopon 20935   Cn ccn 21249  IIcii 22898  PHtpycphtpy 22987  phcphtpc 22988   Ω1 comi 23020   π1 cpi1 23022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-tset 16168  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252  df-ii 22900  df-htpy 22989  df-phtpy 22990  df-phtpc 23011  df-om1 23025
This theorem is referenced by:  pi1buni  23059  pi1bas3  23062  pi1addf  23066  pi1addval  23067  pi1grplem  23068
  Copyright terms: Public domain W3C validator