MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Visualization version   GIF version

Theorem phtpcer 22966
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
phtpcer ( ≃ph𝐽) Er (II Cn 𝐽)

Proof of Theorem phtpcer
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 22964 . 2 Rel ( ≃ph𝐽)
2 isphtpc 22965 . . . 4 (𝑥( ≃ph𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅))
32simp2bi 1138 . . 3 (𝑥( ≃ph𝐽)𝑦𝑦 ∈ (II Cn 𝐽))
42simp1bi 1137 . . 3 (𝑥( ≃ph𝐽)𝑦𝑥 ∈ (II Cn 𝐽))
52simp3bi 1139 . . . . 5 (𝑥( ≃ph𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
6 n0 4062 . . . . 5 ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
75, 6sylib 208 . . . 4 (𝑥( ≃ph𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
84adantr 472 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽))
93adantr 472 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽))
10 eqid 2748 . . . . . 6 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣)))
11 simpr 479 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
128, 9, 10, 11phtpycom 22959 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥))
13 ne0i 4052 . . . . 5 ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
1412, 13syl 17 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
157, 14exlimddv 2000 . . 3 (𝑥( ≃ph𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
16 isphtpc 22965 . . 3 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
173, 4, 15, 16syl3anbrc 1407 . 2 (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑥)
184adantr 472 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽))
19 simpr 479 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦( ≃ph𝐽)𝑧)
20 isphtpc 22965 . . . . 5 (𝑦( ≃ph𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2119, 20sylib 208 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2221simp2d 1135 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽))
235adantr 472 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
2423, 6sylib 208 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
2521simp3d 1136 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)
26 n0 4062 . . . . . 6 ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
2725, 26sylib 208 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
28 eeanv 2315 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
2924, 27, 28sylanbrc 701 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
30 eqid 2748 . . . . . . . 8 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1))))
3118adantr 472 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽))
3221simp1d 1134 . . . . . . . . 9 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽))
3332adantr 472 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽))
3422adantr 472 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽))
35 simprl 811 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
36 simprr 813 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
3730, 31, 33, 34, 35, 36phtpycc 22962 . . . . . . 7 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧))
38 ne0i 4052 . . . . . . 7 ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
3937, 38syl 17 . . . . . 6 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
4039ex 449 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4140exlimdvv 1999 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4229, 41mpd 15 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
43 isphtpc 22965 . . 3 (𝑥( ≃ph𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4418, 22, 42, 43syl3anbrc 1407 . 2 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥( ≃ph𝐽)𝑧)
45 eqid 2748 . . . . . . . 8 (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦))
46 id 22 . . . . . . . 8 (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽))
4745, 46phtpyid 22960 . . . . . . 7 (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥))
48 ne0i 4052 . . . . . . 7 ((𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
4947, 48syl 17 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
5049ancli 575 . . . . 5 (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5150pm4.71ri 668 . . . 4 (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
52 df-3an 1074 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
53 3ancomb 1086 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5451, 52, 533bitr2i 288 . . 3 (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
55 isphtpc 22965 . . 3 (𝑥( ≃ph𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5654, 55bitr4i 267 . 2 (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥)
571, 17, 44, 56iseri 7926 1 ( ≃ph𝐽) Er (II Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1072  wex 1841  wcel 2127  wne 2920  c0 4046  ifcif 4218   class class class wbr 4792  cfv 6037  (class class class)co 6801  cmpt2 6803   Er wer 7896  0cc0 10099  1c1 10100   · cmul 10104  cle 10238  cmin 10429   / cdiv 10847  2c2 11233  [,]cicc 12342   Cn ccn 21201  IIcii 22850  PHtpycphtpy 22939  phcphtpc 22940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-icc 12346  df-fz 12491  df-fzo 12631  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-mulg 17713  df-cntz 17921  df-cmn 18366  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-cn 21204  df-cnp 21205  df-tx 21538  df-hmeo 21731  df-xms 22297  df-ms 22298  df-tms 22299  df-ii 22852  df-htpy 22941  df-phtpy 22942  df-phtpc 22963
This theorem is referenced by:  pcophtb  23000  pi1buni  23011  pi1addf  23018  pi1addval  23019  pi1grplem  23020  pi1inv  23023  pi1xfrf  23024  pi1xfr  23026  pi1xfrcnvlem  23027  pi1cof  23030  sconnpi1  31499
  Copyright terms: Public domain W3C validator