![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem3 | Structured version Visualization version GIF version |
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
phplem2.1 | ⊢ 𝐴 ∈ V |
phplem2.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
phplem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 5829 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | phplem2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | phplem2.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | phplem2 8181 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
5 | 2 | enref 8030 | . . . 4 ⊢ 𝐴 ≈ 𝐴 |
6 | nnord 7115 | . . . . . 6 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | orddif 5858 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | sneq 4220 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
10 | 9 | difeq2d 3761 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
11 | 10 | eqcoms 2659 | . . . . 5 ⊢ (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
12 | 8, 11 | sylan9eq 2705 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵})) |
13 | 5, 12 | syl5breq 4722 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
14 | 4, 13 | jaodan 843 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
15 | 1, 14 | sylan2 490 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 {csn 4210 class class class wbr 4685 Ord word 5760 suc csuc 5763 ωcom 7107 ≈ cen 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-om 7108 df-en 7998 |
This theorem is referenced by: phplem4 8183 php 8185 |
Copyright terms: Public domain | W3C validator |