MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php4 Structured version   Visualization version   GIF version

Theorem php4 8188
Description: Corollary of the Pigeonhole Principle php 8185: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php4 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)

Proof of Theorem php4
StepHypRef Expression
1 sucidg 5841 . . 3 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2 nnord 7115 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ordsuc 7056 . . . . . 6 (Ord 𝐴 ↔ Ord suc 𝐴)
43biimpi 206 . . . . 5 (Ord 𝐴 → Ord suc 𝐴)
54ancli 573 . . . 4 (Ord 𝐴 → (Ord 𝐴 ∧ Ord suc 𝐴))
6 ordelpss 5789 . . . 4 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
72, 5, 63syl 18 . . 3 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
81, 7mpbid 222 . 2 (𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴)
9 peano2b 7123 . . 3 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
10 php2 8186 . . 3 ((suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
119, 10sylanb 488 . 2 ((𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴)
128, 11mpdan 703 1 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wpss 3608   class class class wbr 4685  Ord word 5760  suc csuc 5763  ωcom 7107  csdm 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000
This theorem is referenced by:  php5  8189  sucdom  8198  1sdom2  8200
  Copyright terms: Public domain W3C validator