![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > php4 | Structured version Visualization version GIF version |
Description: Corollary of the Pigeonhole Principle php 8185: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
Ref | Expression |
---|---|
php4 | ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 5841 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) | |
2 | nnord 7115 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
3 | ordsuc 7056 | . . . . . 6 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
4 | 3 | biimpi 206 | . . . . 5 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
5 | 4 | ancli 573 | . . . 4 ⊢ (Ord 𝐴 → (Ord 𝐴 ∧ Ord suc 𝐴)) |
6 | ordelpss 5789 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) |
8 | 1, 7 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴) |
9 | peano2b 7123 | . . 3 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | |
10 | php2 8186 | . . 3 ⊢ ((suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴) | |
11 | 9, 10 | sylanb 488 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴) → 𝐴 ≺ suc 𝐴) |
12 | 8, 11 | mpdan 703 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ⊊ wpss 3608 class class class wbr 4685 Ord word 5760 suc csuc 5763 ωcom 7107 ≺ csdm 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 |
This theorem is referenced by: php5 8189 sucdom 8198 1sdom2 8200 |
Copyright terms: Public domain | W3C validator |