MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 8187
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8021 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 relen 8002 . . . . . . . . 9 Rel ≈
32brrelexi 5192 . . . . . . . 8 (𝐴𝑥𝐴 ∈ V)
4 pssss 3735 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
5 ssdomg 8043 . . . . . . . . 9 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
65imp 444 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
73, 4, 6syl2an 493 . . . . . . 7 ((𝐴𝑥𝐵𝐴) → 𝐵𝐴)
87adantll 750 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
9 bren 8006 . . . . . . . . 9 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
10 imass2 5536 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
114, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
1211adantl 481 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
13 pssnel 4072 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
14 eldif 3617 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
15 f1ofn 6176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
16 difss 3770 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) ⊆ 𝐴
17 fnfvima 6536 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
18173expia 1286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
1915, 16, 18sylancl 695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
20 dff1o3 6181 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
2120simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝑥 → Fun 𝑓)
22 imadif 6011 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2423eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
2519, 24sylibd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
26 n0i 3953 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2725, 26syl6 35 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2814, 27syl5bir 233 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2928exlimdv 1901 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
3029imp 444 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3113, 30sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
32 ssdif0 3975 . . . . . . . . . . . . . . . 16 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3331, 32sylnibr 318 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
34 dfpss3 3726 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
3512, 33, 34sylanbrc 699 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
36 imadmrn 5511 . . . . . . . . . . . . . . . . 17 (𝑓 “ dom 𝑓) = ran 𝑓
37 f1odm 6179 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3837imaeq2d 5501 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
39 f1ofo 6182 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
40 forn 6156 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
4139, 40syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
4236, 38, 413eqtr3a 2709 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
4342psseq2d 3733 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4443adantr 480 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4535, 44mpbid 222 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
46 php 8185 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → ¬ 𝑥 ≈ (𝑓𝐵))
4745, 46sylan2 490 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥 ≈ (𝑓𝐵))
48 f1of1 6174 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
49 f1ores 6189 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
5048, 4, 49syl2an 493 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
51 vex 3234 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
5251resex 5478 . . . . . . . . . . . . . . . . 17 (𝑓𝐵) ∈ V
53 f1oeq1 6165 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
5452, 53spcev 3331 . . . . . . . . . . . . . . . 16 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
55 bren 8006 . . . . . . . . . . . . . . . 16 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5654, 55sylibr 224 . . . . . . . . . . . . . . 15 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5750, 56syl 17 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
58 entr 8049 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ≈ (𝑓𝐵)) → 𝑥 ≈ (𝑓𝐵))
5958expcom 450 . . . . . . . . . . . . . 14 (𝐵 ≈ (𝑓𝐵) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6057, 59syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6160adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6247, 61mtod 189 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥𝐵)
6362exp32 630 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6463exlimdv 1901 . . . . . . . . 9 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
659, 64syl5bi 232 . . . . . . . 8 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6665imp31 447 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝑥𝐵)
67 entr 8049 . . . . . . . . . 10 ((𝐵𝐴𝐴𝑥) → 𝐵𝑥)
6867ex 449 . . . . . . . . 9 (𝐵𝐴 → (𝐴𝑥𝐵𝑥))
69 ensym 8046 . . . . . . . . 9 (𝐵𝑥𝑥𝐵)
7068, 69syl6com 37 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝑥𝐵))
7170ad2antlr 763 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → (𝐵𝐴𝑥𝐵))
7266, 71mtod 189 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝐵𝐴)
73 brsdom 8020 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
748, 72, 73sylanbrc 699 . . . . 5 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
7574exp31 629 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
7675rexlimiv 3056 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
771, 76sylbi 207 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
7877imp 444 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wrex 2942  Vcvv 3231  cdif 3604  wss 3607  wpss 3608  c0 3948   class class class wbr 4685  ccnv 5142  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  Fun wfun 5920   Fn wfn 5921  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926  ωcom 7107  cen 7994  cdom 7995  csdm 7996  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001
This theorem is referenced by:  pssinf  8211  f1finf1o  8228  findcard3  8244  fofinf1o  8282  ackbij1b  9099  fincssdom  9183  fin23lem25  9184  canthp1lem2  9513  pwfseqlem4  9522  uzindi  12821  symggen  17936  pgpssslw  18075  pgpfaclem2  18527  ppiltx  24948  finminlem  32437  lindsenlbs  33534
  Copyright terms: Public domain W3C validator