MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php2 Structured version   Visualization version   GIF version

Theorem php2 8312
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.)
Assertion
Ref Expression
php2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2827 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω))
2 psseq2 3837 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
31, 2anbi12d 749 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵𝐴)))
4 breq2 4808 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
53, 4imbi12d 333 . . 3 (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)))
6 vex 3343 . . . . . 6 𝑥 ∈ V
7 pssss 3844 . . . . . 6 (𝐵𝑥𝐵𝑥)
8 ssdomg 8169 . . . . . 6 (𝑥 ∈ V → (𝐵𝑥𝐵𝑥))
96, 7, 8mpsyl 68 . . . . 5 (𝐵𝑥𝐵𝑥)
109adantl 473 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
11 php 8311 . . . . 5 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝑥𝐵)
12 ensym 8172 . . . . 5 (𝐵𝑥𝑥𝐵)
1311, 12nsyl 135 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝐵𝑥)
14 brsdom 8146 . . . 4 (𝐵𝑥 ↔ (𝐵𝑥 ∧ ¬ 𝐵𝑥))
1510, 13, 14sylanbrc 701 . . 3 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
165, 15vtoclg 3406 . 2 (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴))
1716anabsi5 893 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  wpss 3716   class class class wbr 4804  ωcom 7231  cen 8120  cdom 8121  csdm 8122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126
This theorem is referenced by:  php4  8314  nndomo  8321
  Copyright terms: Public domain W3C validator