![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph 27998 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
2 | inss1 3976 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
3 | 1, 2 | eqsstri 3776 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
4 | 3 | sseli 3740 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∩ cin 3714 ran crn 5267 ‘cfv 6049 (class class class)co 6814 {coprab 6815 1c1 10149 + caddc 10151 · cmul 10153 -cneg 10479 2c2 11282 ↑cexp 13074 NrmCVeccnv 27769 CPreHilOLDccphlo 27997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-ph 27998 |
This theorem is referenced by: phrel 28000 phnvi 28001 phop 28003 isph 28007 dipdi 28028 dipassr 28031 dipsubdir 28033 dipsubdi 28034 sspph 28040 ajval 28047 minvecolem1 28060 minvecolem2 28061 minvecolem3 28062 minvecolem4a 28063 minvecolem4b 28064 minvecolem4 28066 minvecolem5 28067 minvecolem6 28068 minvecolem7 28069 |
Copyright terms: Public domain | W3C validator |