![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 20176 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 19308 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 LModclmod 19065 LVecclvec 19304 PreHilcphl 20171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-iota 6012 df-fv 6057 df-ov 6816 df-lvec 19305 df-phl 20173 |
This theorem is referenced by: iporthcom 20182 ip0l 20183 ip0r 20184 ipdir 20186 ipdi 20187 ip2di 20188 ipsubdir 20189 ipsubdi 20190 ip2subdi 20191 ipass 20192 ipassr 20193 ip2eq 20200 phssip 20205 ocvlss 20218 ocvin 20220 ocvlsp 20222 ocvz 20224 ocv1 20225 lsmcss 20238 pjdm2 20257 pjff 20258 pjf2 20260 pjfo 20261 ocvpj 20263 obselocv 20274 obslbs 20276 tchclm 23231 ipcau2 23233 tchcphlem1 23234 tchcphlem2 23235 tchcph 23236 pjth 23410 |
Copyright terms: Public domain | W3C validator |