MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgrpsubgsymg Structured version   Visualization version   GIF version

Theorem pgrpsubgsymg 18035
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
pgrpsubgsymgbi.g 𝐺 = (SymGrp‘𝐴)
pgrpsubgsymgbi.b 𝐵 = (Base‘𝐺)
pgrpsubgsymg.c 𝐹 = (Base‘𝑃)
Assertion
Ref Expression
pgrpsubgsymg (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑃(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem pgrpsubgsymg
StepHypRef Expression
1 pgrpsubgsymgbi.g . . . . 5 𝐺 = (SymGrp‘𝐴)
21symggrp 18027 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
3 simp1 1130 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑃 ∈ Grp)
42, 3anim12i 600 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp))
5 simp2 1131 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simp3 1132 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
7 pgrpsubgsymgbi.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
8 eqid 2771 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
91, 7, 8symgplusg 18016 . . . . . . . . . 10 (+g𝐺) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
109eqcomi 2780 . . . . . . . . 9 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝐺)
1110reseq1i 5530 . . . . . . . 8 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝐺) ↾ (𝐹 × 𝐹))
12 resmpt2 6905 . . . . . . . . 9 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1312anidms 556 . . . . . . . 8 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1411, 13syl5reqr 2820 . . . . . . 7 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
15143ad2ant2 1128 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
166, 15eqtrd 2805 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
175, 16jca 501 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
1817adantl 467 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
19 pgrpsubgsymg.c . . . 4 𝐹 = (Base‘𝑃)
207, 19grpissubg 17822 . . 3 ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺)))
214, 18, 20sylc 65 . 2 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺))
2221ex 397 1 (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wss 3723   × cxp 5247  cres 5251  ccom 5253  cfv 6031  cmpt2 6795  Basecbs 16064  +gcplusg 16149  Grpcgrp 17630  SubGrpcsubg 17796  SymGrpcsymg 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-tset 16168  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-subg 17799  df-symg 18005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator