![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgpfi2 | Structured version Visualization version GIF version |
Description: Alternate version of pgpfi 18240. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pgpfi.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
pgpfi2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpfi.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | pgpfi 18240 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)))) |
3 | id 22 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
4 | 1 | grpbn0 17672 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
5 | hashnncl 13369 | . . . . . 6 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
6 | 4, 5 | syl5ibrcom 237 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ)) |
7 | 6 | imp 444 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (♯‘𝑋) ∈ ℕ) |
8 | pcprmpw 15809 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) | |
9 | 3, 7, 8 | syl2anr 496 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
10 | 9 | pm5.32da 676 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)) ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
11 | 2, 10 | bitrd 268 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 ℕcn 11232 ℕ0cn0 11504 ↑cexp 13074 ♯chash 13331 ℙcprime 15607 pCnt cpc 15763 Basecbs 16079 Grpcgrp 17643 pGrp cpgp 18166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-omul 7735 df-er 7913 df-ec 7915 df-qs 7919 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-fac 13275 df-bc 13304 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-sum 14636 df-dvds 15203 df-gcd 15439 df-prm 15608 df-pc 15764 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-eqg 17814 df-ga 17943 df-od 18168 df-pgp 18170 |
This theorem is referenced by: pgphash 18242 ablfaclem3 18706 |
Copyright terms: Public domain | W3C validator |