Step | Hyp | Ref
| Expression |
1 | | pgpfac.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) |
2 | | pgpfac.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
3 | | pgpfac.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐺 ↾s 𝑈) |
4 | 3 | subsubg 17818 |
. . . . . . . 8
⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
6 | 1, 5 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈)) |
7 | 6 | simprd 482 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑈) |
8 | | pgpfac.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Fin) |
9 | | pgpfac.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
10 | 9 | subgss 17796 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
11 | 2, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
12 | | ssfi 8345 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ Fin) |
13 | 8, 11, 12 | syl2anc 696 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ Fin) |
14 | | ssfi 8345 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Fin ∧ 𝑊 ⊆ 𝑈) → 𝑊 ∈ Fin) |
15 | 13, 7, 14 | syl2anc 696 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Fin) |
16 | | hashcl 13339 |
. . . . . . . . 9
⊢ (𝑊 ∈ Fin →
(♯‘𝑊) ∈
ℕ0) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ0) |
18 | 17 | nn0red 11544 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑊) ∈
ℝ) |
19 | | pgpfac.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐻) |
20 | | fvex 6362 |
. . . . . . . . . . . 12
⊢
(0g‘𝐻) ∈ V |
21 | 19, 20 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
22 | | hashsng 13351 |
. . . . . . . . . . 11
⊢ ( 0 ∈ V
→ (♯‘{ 0 }) = 1) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . 10
⊢
(♯‘{ 0 }) = 1 |
24 | | subgrcl 17800 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp) |
25 | | eqid 2760 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐻) =
(Base‘𝐻) |
26 | 25 | subgacs 17830 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
27 | | acsmre 16514 |
. . . . . . . . . . . . . . . 16
⊢
((SubGrp‘𝐻)
∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
28 | 1, 24, 26, 27 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(Moore‘(Base‘𝐻))) |
29 | | pgpfac.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐻)) |
30 | 28, 29 | mrcssvd 16485 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻)) |
31 | 3 | subgbas 17799 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻)) |
32 | 2, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 = (Base‘𝐻)) |
33 | 30, 32 | sseqtr4d 3783 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈) |
34 | | ssfi 8345 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Fin ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → (𝐾‘{𝑋}) ∈ Fin) |
35 | 13, 33, 34 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ Fin) |
36 | | pgpfac.x |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
37 | 36, 32 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
38 | 29 | mrcsncl 16474 |
. . . . . . . . . . . . . . . 16
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
39 | 28, 37, 38 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
40 | 19 | subg0cl 17803 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋})) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ (𝐾‘{𝑋})) |
42 | 41 | snssd 4485 |
. . . . . . . . . . . . 13
⊢ (𝜑 → { 0 } ⊆ (𝐾‘{𝑋})) |
43 | 37 | snssd 4485 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑋} ⊆ (Base‘𝐻)) |
44 | 28, 29, 43 | mrcssidd 16487 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
45 | | snssg 4459 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ 𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
46 | 36, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
47 | 44, 46 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ (𝐾‘{𝑋})) |
48 | | pgpfac.oe |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) |
49 | | pgpfac.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ≠ 1) |
50 | 48, 49 | eqnetrd 2999 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑂‘𝑋) ≠ 1) |
51 | | pgpfac.o |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑂 = (od‘𝐻) |
52 | 51, 19 | od1 18176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 ∈ Grp → (𝑂‘ 0 ) = 1) |
53 | 1, 24, 52 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑂‘ 0 ) = 1) |
54 | | elsni 4338 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) |
55 | 54 | fveq2d 6356 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ { 0 } → (𝑂‘𝑋) = (𝑂‘ 0 )) |
56 | 55 | eqeq1d 2762 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ { 0 } → ((𝑂‘𝑋) = 1 ↔ (𝑂‘ 0 ) = 1)) |
57 | 53, 56 | syl5ibrcom 237 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ { 0 } → (𝑂‘𝑋) = 1)) |
58 | 57 | necon3ad 2945 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 })) |
59 | 50, 58 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
60 | 42, 47, 59 | ssnelpssd 3861 |
. . . . . . . . . . . 12
⊢ (𝜑 → { 0 } ⊊ (𝐾‘{𝑋})) |
61 | | php3 8311 |
. . . . . . . . . . . 12
⊢ (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋})) |
62 | 35, 60, 61 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → { 0 } ≺ (𝐾‘{𝑋})) |
63 | | snfi 8203 |
. . . . . . . . . . . 12
⊢ { 0 } ∈
Fin |
64 | | hashsdom 13362 |
. . . . . . . . . . . 12
⊢ (({ 0 } ∈ Fin
∧ (𝐾‘{𝑋}) ∈ Fin) →
((♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
65 | 63, 35, 64 | sylancr 698 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
66 | 62, 65 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘{ 0 }) <
(♯‘(𝐾‘{𝑋}))) |
67 | 23, 66 | syl5eqbrr 4840 |
. . . . . . . . 9
⊢ (𝜑 → 1 <
(♯‘(𝐾‘{𝑋}))) |
68 | | 1red 10247 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
69 | | hashcl 13339 |
. . . . . . . . . . . 12
⊢ ((𝐾‘{𝑋}) ∈ Fin → (♯‘(𝐾‘{𝑋})) ∈
ℕ0) |
70 | 35, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐾‘{𝑋})) ∈
ℕ0) |
71 | 70 | nn0red 11544 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝐾‘{𝑋})) ∈ ℝ) |
72 | 19 | subg0cl 17803 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 0 ∈ 𝑊) |
73 | | ne0i 4064 |
. . . . . . . . . . . . 13
⊢ ( 0 ∈ 𝑊 → 𝑊 ≠ ∅) |
74 | 1, 72, 73 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ≠ ∅) |
75 | | hashnncl 13349 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Fin →
((♯‘𝑊) ∈
ℕ ↔ 𝑊 ≠
∅)) |
76 | 15, 75 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) |
77 | 74, 76 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ) |
78 | 77 | nngt0d 11256 |
. . . . . . . . . 10
⊢ (𝜑 → 0 <
(♯‘𝑊)) |
79 | | ltmul1 11065 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (♯‘(𝐾‘{𝑋})) ∈ ℝ ∧
((♯‘𝑊) ∈
ℝ ∧ 0 < (♯‘𝑊))) → (1 < (♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))) |
80 | 68, 71, 18, 78, 79 | syl112anc 1481 |
. . . . . . . . 9
⊢ (𝜑 → (1 <
(♯‘(𝐾‘{𝑋})) ↔ (1 · (♯‘𝑊)) < ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)))) |
81 | 67, 80 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (1 ·
(♯‘𝑊)) <
((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))) |
82 | 18 | recnd 10260 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑊) ∈
ℂ) |
83 | 82 | mulid2d 10250 |
. . . . . . . 8
⊢ (𝜑 → (1 ·
(♯‘𝑊)) =
(♯‘𝑊)) |
84 | | pgpfac.l |
. . . . . . . . . 10
⊢ ⊕ =
(LSSum‘𝐻) |
85 | | eqid 2760 |
. . . . . . . . . 10
⊢
(Cntz‘𝐻) =
(Cntz‘𝐻) |
86 | | pgpfac.i |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
87 | | pgpfac.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Abel) |
88 | 3 | subgabl 18441 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
89 | 87, 2, 88 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ Abel) |
90 | 85, 89, 39, 1 | ablcntzd 18460 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊)) |
91 | 84, 19, 85, 39, 1, 86, 90, 35, 15 | lsmhash 18318 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘((𝐾‘{𝑋}) ⊕ 𝑊)) = ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊))) |
92 | | pgpfac.s |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
93 | 92 | fveq2d 6356 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘((𝐾‘{𝑋}) ⊕ 𝑊)) = (♯‘𝑈)) |
94 | 91, 93 | eqtr3d 2796 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘(𝐾‘{𝑋})) · (♯‘𝑊)) = (♯‘𝑈)) |
95 | 81, 83, 94 | 3brtr3d 4835 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑊) < (♯‘𝑈)) |
96 | 18, 95 | ltned 10365 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑊) ≠ (♯‘𝑈)) |
97 | | fveq2 6352 |
. . . . . . 7
⊢ (𝑊 = 𝑈 → (♯‘𝑊) = (♯‘𝑈)) |
98 | 97 | necon3i 2964 |
. . . . . 6
⊢
((♯‘𝑊)
≠ (♯‘𝑈)
→ 𝑊 ≠ 𝑈) |
99 | 96, 98 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ≠ 𝑈) |
100 | | df-pss 3731 |
. . . . 5
⊢ (𝑊 ⊊ 𝑈 ↔ (𝑊 ⊆ 𝑈 ∧ 𝑊 ≠ 𝑈)) |
101 | 7, 99, 100 | sylanbrc 701 |
. . . 4
⊢ (𝜑 → 𝑊 ⊊ 𝑈) |
102 | | psseq1 3836 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (𝑡 ⊊ 𝑈 ↔ 𝑊 ⊊ 𝑈)) |
103 | | eqeq2 2771 |
. . . . . . . 8
⊢ (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊)) |
104 | 103 | anbi2d 742 |
. . . . . . 7
⊢ (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
105 | 104 | rexbidv 3190 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
106 | 102, 105 | imbi12d 333 |
. . . . 5
⊢ (𝑡 = 𝑊 → ((𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))) |
107 | | pgpfac.a |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
108 | 6 | simpld 477 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
109 | 106, 107,
108 | rspcdva 3455 |
. . . 4
⊢ (𝜑 → (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
110 | 101, 109 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)) |
111 | | breq2 4808 |
. . . . 5
⊢ (𝑠 = 𝑎 → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑎)) |
112 | | oveq2 6821 |
. . . . . 6
⊢ (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎)) |
113 | 112 | eqeq1d 2762 |
. . . . 5
⊢ (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊)) |
114 | 111, 113 | anbi12d 749 |
. . . 4
⊢ (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) |
115 | 114 | cbvrexv 3311 |
. . 3
⊢
(∃𝑠 ∈
Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
116 | 110, 115 | sylib 208 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
117 | | pgpfac.c |
. . 3
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
118 | 87 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel) |
119 | | pgpfac.p |
. . . 4
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
120 | 119 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺) |
121 | 8 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin) |
122 | 2 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺)) |
123 | 107 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
124 | | pgpfac.e |
. . 3
⊢ 𝐸 = (gEx‘𝐻) |
125 | 49 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1) |
126 | 36 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋 ∈ 𝑈) |
127 | 48 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂‘𝑋) = 𝐸) |
128 | 1 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻)) |
129 | 86 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
130 | 92 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
131 | | simprl 811 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶) |
132 | | simprrl 823 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎) |
133 | | simprrr 824 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊) |
134 | | eqid 2760 |
. . 3
⊢ (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) = (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) |
135 | 9, 117, 118, 120, 121, 122, 123, 3, 29, 51, 124, 19, 84, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 | pgpfaclem1 18680 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |
136 | 116, 135 | rexlimddv 3173 |
1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |