Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Visualization version   GIF version

Theorem pgpfac1lem1 18680
 Description: Lemma for pgpfac1 18686. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
Assertion
Ref Expression
pgpfac1lem1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
21adantr 466 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ 𝑈)
3 pgpfac1.g . . . . . 6 (𝜑𝐺 ∈ Abel)
4 ablgrp 18404 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5 pgpfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
65subgacs 17836 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 16519 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
83, 4, 6, 74syl 19 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
98adantr 466 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
10 eldifi 3881 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → 𝐶𝑈)
1110adantl 467 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝑈)
1211snssd 4473 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝑈)
13 pgpfac1.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1413adantr 466 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
15 pgpfac1.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
1615mrcsscl 16487 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐶} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈)
179, 12, 14, 16syl3anc 1475 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈)
18 pgpfac1.s . . . . . . 7 𝑆 = (𝐾‘{𝐴})
195subgss 17802 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2013, 19syl 17 . . . . . . . . 9 (𝜑𝑈𝐵)
21 pgpfac1.au . . . . . . . . 9 (𝜑𝐴𝑈)
2220, 21sseldd 3751 . . . . . . . 8 (𝜑𝐴𝐵)
2315mrcsncl 16479 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
248, 22, 23syl2anc 565 . . . . . . 7 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2518, 24syl5eqel 2853 . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
26 pgpfac1.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐺))
27 pgpfac1.l . . . . . . 7 = (LSSum‘𝐺)
2827lsmsubg2 18468 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
293, 25, 26, 28syl3anc 1475 . . . . 5 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3029adantr 466 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3120sselda 3750 . . . . . 6 ((𝜑𝐶𝑈) → 𝐶𝐵)
3210, 31sylan2 572 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝐵)
3315mrcsncl 16479 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐶𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
349, 32, 33syl2anc 565 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
3527lsmlub 18284 . . . 4 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
3630, 34, 14, 35syl3anc 1475 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
372, 17, 36mpbi2and 683 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈)
3827lsmub1 18277 . . . . . 6 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
3930, 34, 38syl2anc 565 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4027lsmub2 18278 . . . . . . 7 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4130, 34, 40syl2anc 565 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4232snssd 4473 . . . . . . . 8 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝐵)
439, 15, 42mrcssidd 16492 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶}))
44 snssg 4448 . . . . . . . 8 (𝐶𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4532, 44syl 17 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4643, 45mpbird 247 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶}))
4741, 46sseldd 3751 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
48 eldifn 3882 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → ¬ 𝐶 ∈ (𝑆 𝑊))
4948adantl 467 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ 𝐶 ∈ (𝑆 𝑊))
5039, 47, 49ssnelpssd 3867 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))
5127lsmub1 18277 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
5225, 26, 51syl2anc 565 . . . . . . . 8 (𝜑𝑆 ⊆ (𝑆 𝑊))
5322snssd 4473 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ 𝐵)
548, 15, 53mrcssidd 16492 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5554, 18syl6sseqr 3799 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ 𝑆)
56 snssg 4448 . . . . . . . . . 10 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5721, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5855, 57mpbird 247 . . . . . . . 8 (𝜑𝐴𝑆)
5952, 58sseldd 3751 . . . . . . 7 (𝜑𝐴 ∈ (𝑆 𝑊))
6059adantr 466 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ (𝑆 𝑊))
6139, 60sseldd 3751 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
62 psseq1 3842 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝑤𝑈 ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈))
63 eleq2 2838 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝐴𝑤𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6462, 63anbi12d 608 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑤𝑈𝐴𝑤) ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))))
65 psseq2 3843 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑆 𝑊) ⊊ 𝑤 ↔ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6665notbid 307 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (¬ (𝑆 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6764, 66imbi12d 333 . . . . . 6 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) ↔ ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
68 pgpfac1.2 . . . . . . 7 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
6968adantr 466 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
703adantr 466 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐺 ∈ Abel)
7127lsmsubg2 18468 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7270, 30, 34, 71syl3anc 1475 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7367, 69, 72rspcdva 3464 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7461, 73mpan2d 666 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7550, 74mt2d 133 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈)
76 npss 3865 . . 3 (¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7775, 76sylib 208 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7837, 77mpd 15 1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060   ∖ cdif 3718   ∩ cin 3720   ⊆ wss 3721   ⊊ wpss 3722  {csn 4314   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  Fincfn 8108  Basecbs 16063  0gc0g 16307  Moorecmre 16449  mrClscmrc 16450  ACScacs 16452  Grpcgrp 17629  SubGrpcsubg 17795  odcod 18150  gExcgex 18151   pGrp cpgp 18152  LSSumclsm 18255  Abelcabl 18400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-subg 17798  df-cntz 17956  df-lsm 18257  df-cmn 18401  df-abl 18402 This theorem is referenced by:  pgpfac1lem2  18681  pgpfac1lem3  18683
 Copyright terms: Public domain W3C validator