![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pf1mulcl | Structured version Visualization version GIF version |
Description: The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
pf1mulcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
pf1mulcl | ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘𝑓 · 𝐺) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (𝑅 ↑s (Base‘𝑅)) = (𝑅 ↑s (Base‘𝑅)) | |
2 | eqid 2770 | . . 3 ⊢ (Base‘(𝑅 ↑s (Base‘𝑅))) = (Base‘(𝑅 ↑s (Base‘𝑅))) | |
3 | pf1rcl.q | . . . . 5 ⊢ 𝑄 = ran (eval1‘𝑅) | |
4 | 3 | pf1rcl 19927 | . . . 4 ⊢ (𝐹 ∈ 𝑄 → 𝑅 ∈ CRing) |
5 | 4 | adantr 466 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑅 ∈ CRing) |
6 | fvexd 6344 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (Base‘𝑅) ∈ V) | |
7 | eqid 2770 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 3, 7 | pf1f 19928 | . . . . 5 ⊢ (𝐹 ∈ 𝑄 → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
10 | fvex 6342 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
11 | 1, 7, 2 | pwselbasb 16355 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
12 | 5, 10, 11 | sylancl 566 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
13 | 9, 12 | mpbird 247 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
14 | 3, 7 | pf1f 19928 | . . . . 5 ⊢ (𝐺 ∈ 𝑄 → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
15 | 14 | adantl 467 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
16 | 1, 7, 2 | pwselbasb 16355 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
17 | 5, 10, 16 | sylancl 566 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
18 | 15, 17 | mpbird 247 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
19 | pf1mulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
20 | eqid 2770 | . . 3 ⊢ (.r‘(𝑅 ↑s (Base‘𝑅))) = (.r‘(𝑅 ↑s (Base‘𝑅))) | |
21 | 1, 2, 5, 6, 13, 18, 19, 20 | pwsmulrval 16358 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) = (𝐹 ∘𝑓 · 𝐺)) |
22 | 7, 3 | pf1subrg 19926 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
23 | 5, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
24 | 20 | subrgmcl 19001 | . . . 4 ⊢ ((𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
25 | 24 | 3expib 1115 | . . 3 ⊢ (𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) → ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄)) |
26 | 23, 25 | mpcom 38 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
27 | 21, 26 | eqeltrrd 2850 | 1 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘𝑓 · 𝐺) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ∘𝑓 cof 7041 Basecbs 16063 .rcmulr 16149 ↑s cpws 16314 CRingccrg 18755 SubRingcsubrg 18985 eval1ce1 19893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-hom 16173 df-cco 16174 df-0g 16309 df-gsum 16310 df-prds 16315 df-pws 16317 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-ghm 17865 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-srg 18713 df-ring 18756 df-cring 18757 df-rnghom 18924 df-subrg 18987 df-lmod 19074 df-lss 19142 df-lsp 19184 df-assa 19526 df-asp 19527 df-ascl 19528 df-psr 19570 df-mvr 19571 df-mpl 19572 df-opsr 19574 df-evls 19720 df-evl 19721 df-psr1 19764 df-ply1 19766 df-evl1 19895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |