Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem5N Structured version   Visualization version   GIF version

Theorem pexmidlem5N 35783
 Description: Lemma for pexmidN 35778. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem5N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)

Proof of Theorem pexmidlem5N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4079 . . . 4 ((( 𝑋) ∩ 𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2 pexmidlem.l . . . . . . 7 = (le‘𝐾)
3 pexmidlem.j . . . . . . 7 = (join‘𝐾)
4 pexmidlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidlem.p . . . . . . 7 + = (+𝑃𝐾)
6 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
7 pexmidlem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
82, 3, 4, 5, 6, 7pexmidlem4N 35782 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
98expr 444 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
109exlimdv 2013 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑞 𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑝 ∈ (𝑋 + ( 𝑋))))
111, 10syl5bi 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → ((( 𝑋) ∩ 𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + ( 𝑋))))
1211necon1bd 2961 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ 𝑋 ≠ ∅) → (¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (( 𝑋) ∩ 𝑀) = ∅))
1312impr 442 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631  ∃wex 1852   ∈ wcel 2145   ≠ wne 2943   ∩ cin 3722   ⊆ wss 3723  ∅c0 4063  {csn 4317  ‘cfv 6030  (class class class)co 6796  lecple 16156  joincjn 17152  Atomscatm 35072  HLchlt 35159  +𝑃cpadd 35604  ⊥𝑃cpolN 35711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-undef 7555  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-polarityN 35712 This theorem is referenced by:  pexmidlem6N  35784
 Copyright terms: Public domain W3C validator