Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem1N Structured version   Visualization version   GIF version

Theorem pexmidlem1N 35574
Description: Lemma for pexmidN 35573. Holland's proof implicitly requires 𝑞𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem1N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)

Proof of Theorem pexmidlem1N
StepHypRef Expression
1 n0i 3953 . . 3 (𝑟 ∈ (𝑋 ∩ ( 𝑋)) → ¬ (𝑋 ∩ ( 𝑋)) = ∅)
2 pexmidlem.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 pexmidlem.o . . . . 5 = (⊥𝑃𝐾)
42, 3pnonsingN 35537 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ ( 𝑋)) = ∅)
54adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑋 ∩ ( 𝑋)) = ∅)
61, 5nsyl3 133 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( 𝑋)))
7 simprr 811 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞 ∈ ( 𝑋))
8 eleq1 2718 . . . . . 6 (𝑞 = 𝑟 → (𝑞 ∈ ( 𝑋) ↔ 𝑟 ∈ ( 𝑋)))
97, 8syl5ibcom 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟𝑟 ∈ ( 𝑋)))
10 simprl 809 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝑋)
119, 10jctild 565 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟 → (𝑟𝑋𝑟 ∈ ( 𝑋))))
12 elin 3829 . . . 4 (𝑟 ∈ (𝑋 ∩ ( 𝑋)) ↔ (𝑟𝑋𝑟 ∈ ( 𝑋)))
1311, 12syl6ibr 242 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟𝑟 ∈ (𝑋 ∩ ( 𝑋))))
1413necon3bd 2837 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( 𝑋)) → 𝑞𝑟))
156, 14mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cin 3606  wss 3607  c0 3948  {csn 4210  cfv 5926  (class class class)co 6690  lecple 15995  joincjn 16991  Atomscatm 34868  HLchlt 34955  +𝑃cpadd 35399  𝑃cpolN 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-undef 7444  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-pmap 35108  df-polarityN 35507
This theorem is referenced by:  pexmidlem3N  35576
  Copyright terms: Public domain W3C validator