![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem1N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 35573. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
Ref | Expression |
---|---|
pexmidlem1N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3953 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → ¬ (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) | |
2 | pexmidlem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | pexmidlem.o | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
4 | 2, 3 | pnonsingN 35537 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
6 | 1, 5 | nsyl3 133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋))) |
7 | simprr 811 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
8 | eleq1 2718 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ ( ⊥ ‘𝑋) ↔ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
9 | 7, 8 | syl5ibcom 235 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ ( ⊥ ‘𝑋))) |
10 | simprl 809 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝑋) | |
11 | 9, 10 | jctild 565 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋)))) |
12 | elin 3829 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
13 | 11, 12 | syl6ibr 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)))) |
14 | 13 | necon3bd 2837 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → 𝑞 ≠ 𝑟)) |
15 | 6, 14 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 ‘cfv 5926 (class class class)co 6690 lecple 15995 joincjn 16991 Atomscatm 34868 HLchlt 34955 +𝑃cpadd 35399 ⊥𝑃cpolN 35506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-undef 7444 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-pmap 35108 df-polarityN 35507 |
This theorem is referenced by: pexmidlem3N 35576 |
Copyright terms: Public domain | W3C validator |